
INESC Interim Report Martins and Palma

INESC Interim Report

Joana da Hora Martins

Vera Palma

Tutorial on LASCA Code

Work conducted under the scope of project LASCA

Porto, June 2013

i

Contents

1. Structure .. 1

2. Tutorial on LASCA code ... 1

Bibliography .. 5

INESC Interim Report Martins and Palma

1

1. Structure

The code includes 4 main folders. Next description presents the content of each folder:

 EPSO Files

This folder includes files concerning the EPSO evolution in small space: fitnessfunction.cpp,

fitnessfunction.h, myfitnessHWS.h, particle.cpp, particle.h, swarm.cpp and swarm.h. See a

detailed description at epso.inescporto.pt.

 HW Files

This folder is similar to the above one but for EPSO evolution in original space.

 ITL_networks

This folder contains the files for training a network. The train can be done by ITL concepts [1] or by

backpropagation. A detailed description of this part of code can be found at [1].

 Source Files

This folder only includes one file, which is the main file of C++ project. All the instructions will be

given here (LASCA_main.cpp).

 Header Files

enumerations.h file includes all the enumerations needed over the code.

2. Tutorial on LASCA code

This section includes a description on how to use the LASCA code.

Once you download and install it, please certify that the libraries of armadillo and boost are installed.

The only code file you need to manipulate is the LASCA_main.cpp. We assume the reader is familiar with

the LASCA theory, alongside with the ITL neural networks and EPSO algorithm, all fully detailed in other

reports.

The first option concerns the variable “Train_Global”, where you can choose between the options “ITL” –

meaning that the neural networks further applied will be set to an ITL criteria, “PROP” meaning that the NN

will follow the classic backpropagation algorithm, and “PCA_train” meaning that no train will be executed,

and that the neural networks will be set by PCA weights only:

enum GLOBAL_Train Train_Global = ITL; //can vary between ITL or PROP or PCA_train

Next you need to define the initialization method for both the weights and bias from 1st and 2nd halves. For

the first half the options available are PCA and random. For the weights of the 2nd half the options are

random and transpose. For the bias of both layers, the options are random or zeros:

INESC Interim Report Martins and Palma

2

const enum InitializationW1Methods Init_W1_Method= PCA; //RANDOM_W1, PCA
const enum InitializationW2Methods Init_W2_Method = TRANSPOSE;//RANDOM_W2, TRANSPOSE
const enum InitializationB1Methods Init_B1_Method = ZEROS_B1; // RANDOM_B1 or ZEROS_B1
const enum InitializationB2Methods Init_B2_Method = ZEROS_B2; // RANDOM_B2 or ZEROS_B2

Next, the choice on the activation functions to use can be made with the variables “NeuronActFunct1”

concerning all neurons of second layer, and “NeuronActFunct2” concerning all neurons of 3rd layer. Both

have three options: hyperbolic tangent “NEURON_ACT_TANH”, logistic “NEURON_ACT_LOGISTIC” and

linear “NEURON_ACT_LINEAR”:

//NEURON_ACT_LOGISTIC, NEURON_ACT_TANH, NEURON_ACT_LINEAR
const enum ActivationFunctions NeuronActFunct1 = NEURON_ACT_TANH;
const enum ActivationFunctions NeuronActFunct2 = NEURON_ACT_LINEAR;

Next, the normalization method to apply to data can be defined with the variable “NormMethod”, which

has the following options: normalization using the min max method for each neuron

“ENTRANCE_MIN_MAX”, the method using the min max method for all neurons “GLOBAL_MIN_MAX”, the

Z-score method for each neuron “ENTRANCE_ZSCORE”, the Z-score method for all neurons

“GLOBAL_ZSCORE” or none:

// ENTRANCE_MIN_MAX, GLOBAL_MIN_MAX, ENTRANCE_ZSCORE, GLOBAL_ZSCORE, NONE
const enum NormalizationMethod NormMethod = GLOBAL_MIN_MAX;

When using an ITL criterion to train the neural networks, it is necessary to perform an estimation on the

bandwidth. Two methods are provided to perform this estimation: the silverman rule [2]

“SILVERMAN_RULE” or the rule suggested in [3] “PRINCIPE_RULE”:

const enum sigmaOption sigmaMethod = SILVERMAN_RULE; //SILVERMAN_RULE or PRINCIPE_RULE

The decision where to use or not the Oja’s rule is defined through the variable “OjaRule”:

const enum OjaRule OjaDecision = OjaNO; // OjaYES and OjaNO

The number of runs to executed is defined with the variable “NumberSeeds”:

unsigned int NumberSeeds=10;

The standard label to name all output files is defined:

string Label_data= ("PROP_");

There are other variables which are normally kept unchanged, as they assume the values suggested in

literature. These variables are not referred here, since they are already detailed in [1].

The switch on “Train_Global” variable includes the definition on the number of epochs to include and on

the values to start the adaptive learning rate. These necessarily assume differentiation depending on the

criterion chosen to train the neural network. Therefore, for the method “PROP” the definition includes the

variables “numEpochs1” and “learnCoeff1”, since in this case the neural network is trained as a whole:

INESC Interim Report Martins and Palma

3

switch (Train_Global)
 {
 case PROP:
 {
 numEpochs1 = 2000;
 learnCoeff1.push_back(0.5f);

For the case of a ITL criterion, the differentiation on the number of epochs and on the starting values for

the adaptive learning coefficients is necessary, since in this case the neural network is trained into two

separated parts. Moreover, different training methods are defined train first and second halves. The

methods available for the first half, following an unsupervised approach, are maximization of entropy in the

hidden layer “ENTROPY”, maximization of mutual information between the first and second layers using

the Cauchy Schwartz estimator “CAUCHY_SCHWARTZ”, also maximizing mutual information but with the

Euclidean distance estimator “EUCLIDEAN_DISTANCE”, and the minimization of the mutual information

between each pair of different neurons composing the hidden layer “UNI”:

 case ITL:

 {
 numEpochs1 = 2000;
 numEpochs2 = 2000;

 //ENTROPY, CAUCHY_SCHWARTZ, EUCLIDEAN_DISTANCE, UNI
 W1_Method = CAUCHY_SCHWARTZ;

 // W2_PROP, CIM, Corr
 W2_Method = W2_PROP;

 learnCoeff1.push_back(0.5f);

 learnCoeff2.push_back(0.05f);

The transference of swarms from S to S’, and from S’ to S, can be performed following two options: the first

considers that velocities are also transferred as

 since the neural network is only suitable to

reproduce the particles “TRANSFER_VEL”. The second option considers a random initialization of velocities

each time a space transition is made:

enum Initi_Vel Vel_init = RANDOM_VEL; //TRANSFER_VEL RANDOM_VEL

If you are using the code concerning the hydro-wind coordination problem, two options are available: the

problem with 8 reservoirs “Reservoirs8”, or the problem with 12 reservoir “Reservoirs12”. If you are using

the code concerning the optimization benchmark functions, a wider range of possibilities is available, and

the option made is necessary to include to define not only the “Function_selected“ but also “myFf” and

“myFfs”.

enum MATH_FUNCTIONS Function_selected =
F_ShifRastrigin; //F_Rosenbrock F_Sphere
F_Alpine F_Griewank F_ShifSphere
F_ShifRastrigin F_ShifSchwefel
 ShifRastrigin myFf; //Rosenbrock
Sphere Alpine Griewank ShifSphere
ShifRastrigin ShifSchwefel

enum ProblemSelection ProblemSelect =
Reservoirs8; //Reservoirs8, Reservoirs12

INESC Interim Report Martins and Palma

4

 ShifRastriginS myFfs; //RosenbrockS
SphereS AlpineS GriewankS ShifSphereS
ShifRastriginS ShifSchwefelS

Next the number of iterations to include in each part of LASCA algorithm: Part A “maxIterI”, Part B

“maxIterS” and Part C “maxIterF”.

unsigned int maxIterI=100;
unsigned int maxIterS=20;
unsigned int maxIterF=20;

Next, the selection on the number of instances to be stored to train the neural networks. These include

train, test and validation datasets:

unsigned int trainDim=1000;/*NOTA IMPORTANTE: a alteração do terinoDim PODE IMPLICAR uma
adaptação das var treinoBegin e treinoEnd*/
unsigned int testDim=500;
unsigned int validationDim=500;

Specific of optimization functions code

The selection of the dimension composing each layer (only available for the optimization benchmark

functions) is made with the variables “DimIn” and “DimHidden”, respectively.

unsigned int DimIn = 120, DimHidden = 50;//dimensão da camada interior7

The switch over “Function_selected“ allows the definition of the remainder parameters for each function:

the boundaries of the function, the values for the EPSO parameters tau and cp, for both original and

reduced spaces, and the number of particles.

switch (Function_selected)
 {
 case F_Rosenbrock:
 {
 minPosMath = -30.0;
 maxPosMath = 30.0;

 vec_tauG.push_back(0.8);
 vec_cpG.push_back(0.9);

 #ifdef Hybrid_EPSO
 vec_tauP.push_back(0.9);
 vec_cpP.push_back(0.75);
 #endif
 numParticles = 400;
 minimize = true;
 break;
 }

Specific of hydro-wind functions code

The number of particles composing each swarm is defined as:

unsigned int numParticles=100;

INESC Interim Report Martins and Palma

5

Since the hydro-wind problem has a pre-specified dimension on the original space, in this case the only

dimension that is changeable is the “DimHidden”:

switch (ProblemSelect)
 {
 case Reservoirs8:
 {
 numR=8.0f, temp=12.0f;
 DimIn=temp*numR;
 DimHidden=50;//dimensão da camada interior

Finally, the definition of the EPSO parameters for both spaces is provided in:

//======================================
//for space S
vector <double> vec_tauG; double TauG;
vector <double> vec_cpG; double CpG;
vec_tauG.push_back(0.9);
vec_cpG.push_back(0.7);
int DimcpG = vec_cpG.size();
int DimtG = vec_tauG.size();

//======================================
//for hybrid approach
#ifdef Hybrid_EPSO
 vector <double> vec_tauP; double TauP;
 vector <double> vec_cpP; double CpP;
 vec_tauP.push_back(0.8);
 vec_cpP.push_back(1.0);
 int DimtP = vec_tauP.size();
 int DimcpP = vec_cpP.size();
#endif

Bibliography

[1] V. Palma e J. Hora, “Theoretical Concepts of ITL Neural Networks,” INESC Interim Report, Porto, 2012.

[2] B. W. Silverman, Density Estimation for Statistics and Data Analysis, London: Chapman & Hall/CRC,

1986.

[3] J. C. Principe, Information Theoretic Learning - Renyi's Entropy and Kernel Perspectives, New York:

Springer, 2010.

