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Abstract – This paper presents a new approach to incipient 
fault diagnosis in power transformers, based on the results of 
dissolved gas analysis. A set of autoassociative neural networks 
or autoencoders are trained, so that each becomes tuned with a 
particular fault mode. Then, a parallel model is built where the 
autoencoders compete with one another when a new input vector 
is entered and the closest recognition is taken as the diagnosis 
sought. A remarkable accuracy is achieved with this architecture, 
in a large data set used for result validation. 

IndexTerms – Auto-associative networks, transformer failure, 
failure diagnosis. 

I.  INTRODUCTION 

ransformer fault diagnosis via dissolved gas [1] analysis 
(DGA) is a problem that has deserved constant attention 

from many researchers, because of the economic importance 
of the early detection of evolving faults that may lead to 
equipment failure. Furthermore, it is a problem that was object 
of an IEC norm (IEC 60599 [2]) and a data base for diagnosed 
failures denoted IEC TC10 is available for researchers to study 
and develop new models [3]. 

Thus, it should not be surprising that a number of 
techniques have been proposed to deal with this problem. 
Knowledge may be extracted from the available data base and 
then applied to test cases to validate diagnosis models 
proposed. Among these, one may find expert systems [4], 
fuzzy set models [5], multi-layer feedforward artificial neural 
networks (ANN) [6][7], wavelet networks [8], hybrids fuzzy 
sets/ANN [9], radial basis function neural networks [10], 
Support Vector Machines (SVM) [11], Self-Organizing Maps 
(SOM) or Kohonen Neural Networks [12] are just some of the 
techniques that one finds in the literature, and this is just an 
enumeration of examples and not an exhaustive listing. 
Furthermore, benchmarking is always possible against the set 
of diagnosis rules in [2]. 

This paper describes a new approach to the problem which 
matches the highest accuracy with simplicity – a diagnosis 
system based on autoassociative neural networks, or simply 
autoencoders, which are special feedforward neural networks 
designed and trained in such a way that the output reproduces 
the input. 
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The training has the specific purpose of making the 
autoencoder learn the non-linear manifold where data lies. 
Once learned, the autoencoder may be used as recognition 
machine – if a new data vector belongs to the manifold, the 
autoencoder will produce a small error; however, if this vector 
does not lie on the manifold (which should be the case if the 
new input vector is distinct from the global pattern of the data 
used for training), the autoencoder will return in the output a 
result not matching the input and the error will be high. 

This property is used in the model proposed in this paper. 
First, for each fault type, a specific autoencoder is trained so 
that it learns this fault's characteristics. Then, when data for an 
unknown fault type is considered, each autoencoder for each 
type of fault will try to match output to input – but, hopefully, 
only one will stay tuned while all the other will display large 
errors. The fault is thus identified by recognizing which 
autoencoder presents minimum error. 

II.  AUTOENCODERS 

Auto-associative neural network encoders, or simply 
autoencoders, are feedforward neural networks that are trained 
to reproduce the input space S in the output. Because some 
inner layer will have a number of neurons n different to the set 
of m inputs/outputs, this layer will effectively be encoding 
variables from S into a different dimension space S'.  There is 
no theoretical limitation on the architecture of autoencoders, 
either on the number of neurons or the number of layers. The 
simplest architecture keeps only one middle hidden layer. Fig. 
1 illustrates this case, when dim(S) > dim(S'). Naturally, the 
input and output layers are of equal size. 

An autoencoder can be split in two halves: the first half 
approximates a function f  that maps the input space S onto 
S’ while the second half approximates the inverse function

1f − .  

 
 

Fig. 1. An autoassociative neural network or autoencoder, with input and 
output layers of the same dimension and a different middle layer. If trained to 
reproduce the input variables in the output, one has in the middle layer a set of 
values that encode, in a different space S’, the values in S. 
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Once properly trained, the autoencoder learns the data 
supporting manifold by memorizing, in its weights, its 
projection onto a different space and the inverse projection. 
When the hidden layer has a smaller dimension than the outer 
layers, one achieves an effective feature space reduction 
whenever dim(S) > dim(S’). This has been used to build data 
compression machines [13][14][15][16]. 

A point over the data manifold will be correctly projected 
back and forth by a trained autoencoder; however, a point not 
lying on the data manifold will not be correctly re-projected 
back and a large error ε will be detected between input and 
output. This property may be used in pattern recognition and 
classification, as well as in novelty detection [17]. 

The classical training of autoencoders uses the same tools 
as any other feedforward network, namely backpropagation. 
However, because of the special architecture of an 
autoencoder with a middle bottleneck, experience has shown 
that training may be difficult and the tuning of the weights in 
the first layers may require many epochs and extreme care in 
choosing the departing values. This is why, especially in 
architectures with several layers, specific training procedures 
have been developed, such as referred to in [13]. 

It has been shown that autoencoders with linear activation 
functions produce a mapping in the inner layer (space S') 
equivalent to Principal Component Analysis (PCA) [18]. This 
means that information is condensed along orthogonal axes 
such that variance is minimized. There is nevertheless loss of 
information. When the activation functions are non-linear 
(sigmoidal), it has been shown that the mapping is not 
equivalent to PCA and has better characteristics [19]. Of 
course, it is always assumed that the training is done in 
supervised mode, adopting a Minimum Square Error criterion. 
If X is the input vector and Y the output vector, then for N 
samples 

 𝑀𝑆𝐸:     min ε = 1
𝑁
∑ ‖𝑿𝒌 − 𝒀𝒌‖2𝑁
𝑘=1  (1) 

MSE is, of course, the minimization of the variance of the 
pdf (probability density function) of the error distribution – 
but is it known that this criterion is only optimal if this 
distribution is Gaussian. Therefore, the adoption of this 
criterion may be challenged whenever the error distribution 
cannot be assumed as Gaussian. A non-parametric method 
should be preferred. 

III.  FAULT DIAGNOSIS DATA IN POWER TRANSFORMERS 
The process of detecting incipient failures in power systems 

usually departs from monitoring the evolution rate of 
dissolved gases in the oil. When this change is considered 
significant, possible fault is investigated through the DGA 
(dissolved gas analysis) technique and upon confirmation of 
the suspicion, other procedures are put in place namely to 
locate the fault.  

One of the well-known diagnosis methods is the one 
described in the norm IEC 60599 [2] and summarized in Table 
1. These rules, when applied to the transformer data set IEC 
TC10, lead to a number of mistaken classifications plus a 
number of non-classified patterns (non-identified failures). 

TABLE 1 – IEC 60599 FAULT DIAGNOSIS RULES 

Case Fault type 
𝐶2𝐻2
𝐶2𝐻4

 
𝐶𝐻4
𝐻2

 
𝐶2𝐻4
𝐶2𝐻6

 

PD Partial discharge NS <0.1 <0.2 

D1 Low energy discharge >1 0.1-0.5 >1 

D2 High energy discharge 0.6-2.5 0.1-1 >2 

T1 Thermal fault – T<300oC NS >1 but NS <1 

T2 Thermal fault  300oC< 
T<700oC <0.1 >1 1-4 

T3 Thermal fault – T>300oC <0.2 >1 >4 
 
It is usual to lump together the cases T2 and T3 in many 

studies, because the number of cases in the data base is too 
small to an adequate training. 

As far as quality or diagnosis accuracy is concerned, Table 
2 presents some results of a few systems developed for 
transformer diagnosis based on DGA. One must bear in mind 
that a direct comparison of percentage of hits/misses should 
take in account that the data sets used were not the same in all 
works reported. 

 
TABLE 2  – RESULTS IN DIFFERENT SYSTEMS/PUBLICATIONS 

Model 
No. samples 

in the 
database 

% of correct diagnoses of the 
developed system 

Zhang et al [6] (?) 95% 
Classification of the 3 main faults 

Huang et al [7] 711 90.30% -training set 
93.81% - testing set 

Wang [20] 210 
 

99.72% - training set 
95.34% - testing set 

Liao et al [21] 711 96.2% 

Guardado et al 
[22] 33 

ANN training considering: 
Dornemburg method – 90.91% 
Modified Roger – 87.88% 
Roger – 90.91% 
IEC – 93.94% 

Huang [23] 820 

90.49% and 93.54%, depending 
on the number of inputs 
Classification of only 4 fault 
types 

Castro et al [24] 431 100.0% -training set 
97.84% - testing set 

Miranda et al [9] 431 99,37% in IEC TC10 data 
 

In the work reported in this paper, the data base from [3] 
was used, complemented with data from other origin,  
comprising 318 cases, from which 230 were selected to 
constitute a training set and the remainder 88 were used as 
validation or test set. Each sample in the data base includes 
information of dissolved gas concentration of H2 (hydrogen), 
CH4 (methane), C2H6 (ethane), C2H4 (ethylene) and C2H2 
(acetylene) as well as the verified condition of the transformer. 
In order to have sets with minimally meaningful sizes, the 
types of faults were organized as in Table 3 (five fault types). 
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TABLE 3 – SAMPLES GROUPED FOR TRAINING AND IDENTIFICATION 

 Type of Fault No. of samples 

T1 Thermal fault – T<300oC 77 
T2 Thermal fault – T>300oC 71 

PD Partial discharge 30 

DL Low energy discharge 37 

DH High energy discharge 103 
 
 

 
 

Fig. 2. General architecture of the new diagnosis system, based on a set of 
autoassociative neural networks in parallel, each tuned for a specific fault 
type, and generating competing outputs[25] . 

 

IV.  NEW DIAGNOSIS SYSTEM CONCEPT 
Most automatic diagnosis systems based on neural 

networks and similar approaches rely on a single system that 
performs classification. When activated by a sample at its 
input, they produce an output signal indicating the proposed 
fault classification. In this paper, we describe a distinct and 
more successful approach. 

The new idea behind the diagnosis system is to tune an 
independent autoassociative network for each cluster of data 

and then, for an unclassified sample, have the tuned 
autoassociative networks competing for the identification of 
the fault. 

In line with Table 2, for this model one requires 5 distinct 
autoencoders, one for each fault. The input vectors were 
specified as being with exactly the same composition as used 
in IEC 60559 norm, meaning that we used the concentration 
ratios  (C2 H2)/(C2 H4), (CH4)/(H2) and (C2H4)/(C2H6). 

Fig. 2 illustrates the competitive parallel architecture for 
the diagnosis system. Each autoassociative neural network is 
trained to learn the manifold where data for a specific fault lie, 
returning the same vector if a new case for the same fault is 
input and returning a vector with a large deviation from input 
if a different case is input.  

Thus, when a gas concentration ratio vector is input, it is 
expected that only one autoencoder will display a small error, 
recognizing that the vector is close to a particular learned 
manifold, while the other autoencoders will not be able to 
display, at their output, a close reproduction of the input. 
Therefore, when the competing autoencoders present to the 
decision module their error value, the winner is the one with 
minimum error. 

V.  TRAINING AND TESTING 
For the transformer diagnosis system, the error in each 

autoencoder was calculated as in Eq. (1), which is equivalent 
to a Euclidean distance between the two vectors (input and 
output). Each autoencoder was designed with 3 neurons in the 
input and output layers, corresponding to the 3 gas ratios, and 
a hidden layer with dimension 15. So, instead of a bottleneck 
on the middle layers, one generates a projection into a higher 
dimension space. With only 3 inputs, it would be senseless to 
compress the data into 2 or 1 dimension in the middle layer. 

The activation functions used in the input and hidden layers 
were hyperbolic tangents, while in the output layer each 
neuron had a linear activation function. The training procedure 
adopted the Levenberg-Marquardt algorithm and was 
performed in Matlab. 

In Table 4 one finds the results obtained with the new 
system, as opposed to the ones obtained when applying IEC 
60599 to the same data. It is remarkable that no errors or 
misclassification were produced by the new system (318 hits 
in 318 cases!). The training and test sets were not especially 
doctored, except that there was care in having a training set 
covering as evenly as possible the domain. From the results of 
applying the IEC 60599 model, one may see that the 
validation set was not especially easy to diagnose. 

 
TABLE 4 – RESULTS AND DIAGNOSIS ACCURACY COMPARISON 

Model 

% correctly 
identified 

faults in the 
training set 

% correctly 
identified 

faults in the 
validation set 

No. of non-
identified 

faults 

No. cases 
with wrong 
diagnosis 

IEC 60599 95.65 89.77 14 5 
Castro-
Miranda 

Autoencoder 
100 % 100 % 0 0 

ε1 

ε5 

ε2 

min 
ε 
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TABLE 5 – SAMPLES FROM THE IEC TC10 DATABASE AND PERFORMANCE 

COMPARISON BETWEEN IEC 60599 AND THE AUTOENCODER DIAGNOSIS 
SYSTEM 

C2H2

C2H4
 

CH4

H2
 

C2H4

C2H6
  

Fault 

 
Auto-

encoder 

 
IEC 

60599 

0.0417     1.1628     0.4444 T1 T1 T1 

0.0164 1.0494 0.1452 T1 T1 T1 

0.3333 4.0 0.1765 T1 T1 T1 

0.0098 2.7497 4.0 T2 T2 T2 

0.0412 1.8218 4.0 T2 T2 T2 

0.0198 1.8438 4.0 T2 T2 T2 

0.0001 0.1102 0.0001 PD PD NI 

1.1667 0.1065 0.1000 PD PD NI 

0.0001 0.0476 0.0001 PD PD PD 

1.0 0.1667 1.0 DL DL NI 

4.0 0.1607 4.0 DL DL DL 

2.2233 0.125 1.0605 DL DL DL 

0.6667 0.2250 4.0 DH DH DH 

0.8800 0.1650 4.0 DH DH DH 

0.6818 0.3950 3.1429 DH DH DH 

 
To illustrate this result with a few examples, Table 5 

presents some classification results, with the correct fault 
identification, the diagnosis produced by the autoencoder 
model and the result provided by IEC 60599. 

The new system displays an absolute superiority over IEC 
60599 and is better than any result reported and summarized 
in Table 4, where the best result is the one referenced in [9], 
resulting from 2 errors in the data from IEC TC10, but 
deriving from a larger database. In relation to IEC 60599, the 
autoencoder model was able to solve and correctly identify all 
undecided cases produced by this method. 

The 100% hit is, indeed, a remarkable result. It can only be 
explained by the capacity of the autoencoders to really learn 
distinct manifolds for the distinct sets or clusters of data.  

 

VI.  CONCLUSIONS 
The work reported in this paper presents an original model 

for incipient transformer fault diagnosis, which is based on a 
novel application of autoassociative neural networks. 

The main idea behind the new system if to take advantage 
of the property of autoencoders that allows them to learn the 
manifold where data lie, by projecting inputs to a different 
space and reprojecting back to the input space. One can 
therefore tune an autoencoder to a particular fault mode. When 
activated by a new input vector, an autoencoder will reproduce 
it in its output with very small error if the input corresponds to 
the fault for which it was trained, otherwise the output will 
display a large dissimilarity with input. 

The results presented show that, in the transformer fault 

diagnosis based on DGA, autoencoders do discriminate among 
the distinct fault modes and are able to pinpoint faults with a 
remarkable accuracy – so much so that the results obtained 
surpassed all published results referenced. 

The architecture proposed for fault diagnosis is completely 
general and its application is not restricted to transformer fault 
diagnosis. It may be suitable for any problem with data in 
enough quantity to allow proper training of the autoassociative 
neural networks. 
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