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Abstract −−−− This paper explores a technique denoted LASCA 

to solve large scale optimization problems with metaheuristics by 

reducing the search space dimension with autoassociative neural 

networks. The technique applies autoencoders as a reversible 

mapping between the original problem space and a reduced 

space. A metaheuristic then evolves in the latter, having its 

objective function assessed in the original space. The technique is 

illustrated with an application of an EPSO (Evolutionary Particle 

Swarm Optimization) algorithm to four benchmarking 

unconstrained optimization functions and to a wind-hydro 

constrained coordination problem. The new technique allows an 

improvement in the quality of the solutions attained. 

 

Index Terms — Wind-hydro coordination problem, large 

scale optimization, neural networks, autoencoders, evolutionary 

algorithms, metaheuristics . 

I.  INTRODUCTION 

OLVING problems in high dimensional spaces is both 

demanding in computing resources and difficult in the 

convergence to satisfactory solutions. One of the major 

practical problems relates to the curse of dimensionality [1]. 

This is particularly true in the case of the behavior of 

metaheuristics . This difficulty usually leads to a termination 

of runs earlier than necessary, when using metaheuristics such 

as: genetic algorithms [2], evolutionary algorithms [3] or 

cooperative coevolution [4], among many. This paper 

addresses the problem of solving large scale optimization 

problems with metaheuristics  by achieving a reduction in the 

dimensionality of their search spaces.  

The problem of space reduction has been addressed e.g. in 

clustering and in image processing. One important technique 

is Principal Component Analysis (PCA) [5], which projects 

the data into a linear subspace: data are multiplied by the 

eigenvectors from the sample covariance matrix, each point 

being represented by its coordinates along the orthogonal 

directions of the greatest variance in the data set. 

One topic explored in this paper and not usually addressed 

is the adoption of dimensionality reduction techniques as a 

general optimization tool for large scale problems. It is thus 
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necessary to transfer into a reduced space not only the data but 

also the constraints. 

The technique developed was firstly suggested in [6], and is 

here denoted as LASCA (LArge SCale optimization with 

Autoencoders). The main idea is to allow an evolutionary 

metaheuristic to evolve in a reduced dimension space �′, 
controlling its progression in the original space �. The 

transition between � and �′ is made through an autoencoder, 

applied as a reversible mapping between the two spaces. 

The LASCA technique is illustrated with an application of 

an EPSO (Evolutionary Particle Swarm Optimization) [7] 

algorithm to 5 case studies in high-dimensional spaces: four 

mathematic optimization functions suggested in [8] (the 

Alpine, Shifted Sphere, Shifted Rastrigin and Griewank 

functions). Then, a power system problem in wind-hydro 

coordination problem is also tested. 

The results obtained show that the LASCA approach may 

lead to better quality solutions than the attempt to solve them 

with metaheuristics in the original large dimensional space. 

Only in one case (Griewank) the process did not return a 

significant gain in accuracy, in computational effort or in the 

quality of the solution achieved. But the reasons for this seem 

to be associated to the fact that the convergence obtained with 

the metaheuristic in the original space was found to be already 

sufficient to achieve the optimum within few iterations. 

LASCA is, therefore, a process to be taken in account in 

solving difficult large scale problems. Its contribution to 

solving the wind-hydro coordination problem is relevant.  

II.  WHY AUTOENCODERS 

Autoencoders, or autoassociative neural networks (NN), are 

feedforward neural networks trained to replicate the input data 

vectors, represented in a space S, in their output equally in S. 

In a simple autoencoder (Fig. 1), there is a middle layer with a 

distinct, usually smaller dimension from input or output. The 

information flowing through the autoencoder must pass such 

bottleneck with minimum loss. A one-to-one reversible 

mapping between points in � of dimension � and a space �′ 
of dimension � (with � � �) is established: the first half of 

the autoencoder projects the input information onto S’ and the 

second half produces the inverse projection. The quality of the 

process highly depends on the quality of the training. 

The adequacy of autoencoders to reduce the dimensionality 

of data is widely known [9][10]. Autoencoders have been 

applied to perform signal analysis [11][12] or to reconstruct 

missing sensor signals [13]. 
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Fig. 1. Schematic of an autoencoder. An instance in space � is encoded into a 

reduced space �′ by �, and is expanded back into � by ���. 
 

Other applications include the representation of images 

within a reduced space [14][15], allowing the application of 

several processing techniques such as pattern recognition. For 

instance, face images could be identified and clustered 

according to sex and distinguished from non-faces [16]. 

Optimizing the weights of multiple inner layer autoencoders 

with non-linear activation functions is a heavy and difficult 

task; therefore, new schemes to achieve a more efficient 

training are being proposed [17][18]. 

Finally, there is no indication on the adequate ratio between 

the number of neurons in the middle layer and in the 

inputs/output layers). This decision has been dictated by trial 

and error and by the characteristics of the problem, having in 

mind that the greatest dimension reduction with only 

negligible loss of quality is almost always desirable.  

In summary: the main technical reason to reduce space 

dimensionality is the ineffectiveness of metaheuristics in 

solving problems in very large spaces; and the main technical 

reason to adopt autoencoders is their learning ability: as neural 

networks, they may learn about the search space from the 

results of a preliminary search, and if so they may perform a 

satisfactory space dimensionality reduction. 

III.  WHY EPSO 

The optimization metaheuristic adopted was EPSO, for 

Evolutionary Particle Swarm Optimization. EPSO is a hybrid 

of the concepts of Evolutionary Algorithms (EA) and Particle 

Swarm Optimization (PSO) [19], first proposed in [7], 

improved in [20] and with an enhanced version in [21]. It is an 

EA with a self-adaptive recombination operator inspired in the 

“movement rule” of PSO. This rule generates a new individual 

(chromosome, particle) as a weighted combination of parents: 

a given individual, its best ancestor and the best ancestor of 

the swarm. This weighted mix may vary in each space 

dimension. A mutation operator is applied to the weights, 

therefore forming a self-adaptive recombination operator. 

An EPSO iteration starts with a swarm of 	 particles. Each 

particle originates 2 descendants, from which only one will 

survive. The steps are: 

Replication: each particle 
� is replicated. The �� replica 

of 
� is designated as 
��. In practice, only 2 replications are 

used. 

Mutation: changing the weights of Inertia (��), Memory 

(��) and Cooperation (��) associated to each replica 
��. 

The mutation for �� is given in (1), where � is a learning 

parameter that can be fixed or be subject to mutation. Similar 

rules are considered for the �� and ��. 

 ������ � ���� � � ∙ ��0,1� (1) 

Reproduction: each particle 
�� originates a new 

descendant according to the movement rule 
���� � 
�� ������� ∙ ��� ������� ∙ ���  
�� � � !	������ ∙ ��#��  
�� � (2) 

where the best known solution achieved by swarm �#  is also 

mutated, inducing agitation in the swarm: 

 �#�� � �# � �$ ∙ ��0,1� (3) 

P in (3) is a binary variable, taking values {0, 1}, defined 

by sampling a random uniform number R and comparing it to 

a threshold cp, defined as the communication probability.  

Evaluation: each descendant fitness is evaluated. 

Selection: one particle from each group of k descendants is 

selected to form the new swarm.  

EPSO is a metaheuristic very successfully benchmarked 

against other algorithms, including the very own PSO 

[7][22][23][24][25]. Yet, it also displays the common 

difficulty in convergence in large spaces. For these reasons, it 

has been selected as the test bed for LASCA, as a proxy for 

any population based metaheuristic. 

IV.  THE LASCA APPROACH 

It is known that, in general, population based methods such 

as EA (Evolutionary Programming  or Genetic Algorithms), or 

non-evolutionary such as PSO or Ant Colony Methods exhibit 

a growingly slow and inaccurate performance with the 

increase in dimension of the search space where individuals 

are defined. This limits their practical application in large 

scale programming problems. However, these problems are 

extremely relevant in Power Systems, where one may find 

planning or operation problems with hundreds to tens of 

thousands of variables. 

The original idea reported in this paper is, therefore, to use 

autoencoder properties to reduce the dimension of the search 

space, while keeping the solution evaluation accurate (based 

on the original space) so that selection may still act and drive 

the process towards an optimum. This idea can be summarized 

in the following sequential parts. 

Phase A. An EA with individuals (particles) is applied in � 

– a space with the dimension of the original problem. Distinct 

solutions obtained over a specified number of iterations are 

stored. These are used as a dataset to train an autoencoder to 

encode/decode particles between � and �′. This will hopefully 

capture characteristics of the landscape being searched. 

The training and test sets used to generate the autoencoder 

neural network are not obtained through random sampling. In 

fact, because the sampling is conducted using an evolutionary 

optimizing method, it becomes very likely that one will have a 

denser representation of the solution space in regions closer to 

the optimum, which is a very desirable trait. 

Phase B. The last swarm obtained in Phase A, that was 

evolving in �, will be transferred (projected on) to �′. The 

information transferred includes the particles and the 

corresponding best positions, velocities and weights of inertia, 

cooperation, memory and perturbation. 
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 Fig. 2. Phase B: the particles evolve in �′ but the fitness evaluation is made in � using the decoding function ��� on the 2nd half of the autoencoder. 

 

The transference is made by applying the encoding function � corresponding to the 1
st
 half of the autoencoder. For each 

particle, its velocity is calculated in �′ as the difference 

between the corresponding compressed positions in % and in %  1. The transference of weights is made directly. Once the 

swarm is transferred, it is made to evolve in S’. But the 

evaluation of the fitness function is not possible in S’, since 

the components of the particles in the reduced space have no 

direct physical meaning. Therefore, the particles are first 

decoded onto S and then evaluated, as represented in Fig. 2. 

This procedure ensures that the evolution observed in S’ 

corresponds to an improvement in the problem addressed. 

The variables in S’ (the output of the neurons in the middle 

layer) are a mix with unknown meaning. As constraints 

associated with limits must be enforced in this space, for the 

set of values assumed by the variables in S’ limits are defined 

taking in account the minimum and maximum values 

registered in the training set. Besides, a classical penalty 

strategy is applied in S (output) in the fitness evaluation. 

Phase C. The autoencoder results in an approximation of 

the exact mapping  � ↔ �′. It is possible that the exact 

optimum of the original problem may not be found in �′, but a 

near optimal solution or, at least, the location of the optimum 

will be found. A final search in S may prove useful. A transfer 

from S’ to S is done using ��� (2
nd

 half of the autoencoder) 

and the EA version from Phase A is re-launched. 

V.  BENCHMARK OPTIMIZATION FUNCTIONS 

This section includes the results obtained with the 

application of the LASCA approach to four benchmark 

optimization functions, and the comparison with EPSO 

running solely in  �, in swarms of 400 particles.  

Table 1 presents the four problems and variants. Table 2 

indicates the architecture of the autoencoders and the training 

parameters: learning rates τ, communication probabilities cp 

for the EPSO running in spaces S and S’, as well as the 

number of EPSO iterations spent in phases A-B-C in each 

problem. 

Table 3 describes the type of activation functions used in 

the NN neurons, in each experiment. The training was done 

with two distinct methods. In Table 3, PROP denotes a 

classical backpropagation training minimizing the MSE (mean 

square error between input and output). QMI-CS means that 

the first half of the autoencoder was trained in unsupervised 

mode [18], maximizing the Quadratic Mutual Information 

transferred between input and output, estimated using the 

Cauchy-Schwarz distance, and then the second half was 

trained independently, using a supervised backpropagation 

minimizing the MSE. All autoencoders were initialized before 

training by applying a PCA projection matrix as weight matrix 

of their first half, as if the activation functions were linear. 

Table 4 indicates the location and the value of the optimum 

in each problem as well as the best results in 10 trials obtained 

by running EPSO in S or running LASCA in S-S’-S. It may be 

seen that in all cases the LASCA approach could beat the 

EPSO metaheuristic acting solely in the original space S. 
 

TABLE 1. PROBLEM DEFINITION AND DIMENSIONS D OF VARIANTS Name ��+�, ⋯ , +-� � Obj	 D	
Alpine 7sin	�+��

-
�9�

:7 +�-
�9�  Max	 120	200	300	

Shifted	Sphere E+�F
-
�9�

� �G�HI min	 120	200	300	
Shifted	Rastrigin 

L� �EM+�F  L cos�2P+��Q
-
�9�

 330 min	 120	300	
Griewank 1 � 14000E+�F

-
�9�

 7�VW X+�√�Z
-
�9�

 min	 120	
 

TABLE 2. NN ARCHITECTURE, PARAMETERS. ITERATIONS IN PHASES A-B-C NN	input-middle-output	 �] 	 �	] 	 �]$	 �	]$	 no.	iterations	A-B-C	 Name	
[120-50-120]	[200-70-200]	[300-150-300]	

0.4	0.4	0.4	
0.1	0.1	0.1	

0.4	0.5	0.1	
0.95	0.9	0.9	

100-100-100	40-40-20	40-40-20	 Alpine	
[120-50-120]	[200-70-200]	[300-150-300]	

0.7	0.7	0.7	
0.9	0.9	0.9	

0.8	0.8	0.8	
0.5	0.6	0.6	

100-100-100	40-40-20	40-40-20	
Shifted	Sphere	

[120-50-120]	[300-150-300]	 0.9	 0.9	 0.8	 0.4	 100-30-100	100-30-100	 Shifted	Rastrigin	[120-50-120]	 0.6	 0.95	 0.75	 0.5	 15-50-100	 Griewank	
 

TABLE 3. NN ACTIVATION FUNCTIONS AND TRAINING METHOD Activation	functions	 Training	method	 Name	input	 hidden	 output	 1st	half	 2nd	half	linear	 tanh	 linear	 PROP	 Alpine	linear	 tanh	 tanh	 QMI-CS	 PROP	 Shifted	Sphere	
linear	 tanh	 linear	 PROP	 Shifted	Rastrigin	linear	 tanh	 linear	 QMI-CS	 PROP	 Griewank	
 

TABLE 4 – EXACT OPTIMUM AND RESULTS BY EPSO AND LASCA  

XOPT	�	 opt	 Best	Fit	EPSO	 Best	Fit	LASCA	 D	 Name	
�7.917,⋯	…,7.917�	

6.42E�53	4.78E�89	3.30E�134	
1.66E�30	2.63E�48	1.28E�72	

1.51E�53	2.63E�88	4.71E�131	
120	200	300	 Alpine	

�0,⋯,0�	 -450	 -433.05	-332.62	-244.69	
-449.94	-416.49	-366.11	

120	200	300	
Shifted	Sphere	

�0,⋯,0�	 -330	 -318.081	-318.264	 -318.087	-321.161	 120	300	 Shifted	Rastrigin	�0,⋯,0�	 0	 0	 0	 120	 Griewank	
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An examination of the following figures, depicting the 

average in 10 trials of the evolution of the objective function, 

allows a deeper understanding of these results 
 

 
Fig. 3. Results obtained with LASCA[300-150-300] and EPSO[300] for the 
Alpine function: progress of the objective function. Average of 10 runs.  

 
Fig. 4. Progress of the objective function obtained with LASCA[120-50-120] 

and EPSO[120], for the shifted sphere function. Average of 10 runs. 

 
Fig. 5. Progress of the objective function obtained with LASCA[300-150-300] 
and EPSO[300], for the Shifted Rastrigin function. Average of 10 runs. 

 
Fig. 6. Progress of the objective function obtained with LASCA[120-50-120] 

and EPSO[120], for the Griewank function. Average of 10 runs. 

A.  Alpine function 

Fig. 3 illustrates the remarkable advantage given by 

LASCA in solving for the Alpine function in a space of 300 

dimensions. It is obvious that the metaheuristic alone gets 

stuck and does not show progress after some time. The 

LASCA process, with the search in the reduced space S’ 

allowed by the autoencoder, gave an impressive boost and the 

end result, after Phase 3, is remarkably superior. The transition 

into a reduced space clearly allowed the swarm to find a better 

search zone. 

B.  Shifted Sphere function 

It is very obvious, in Fig. 4, the net advantage given by 

LASCA in searching for a solution close to the optimum, in a 

space of 120 dimensions in this case. 

C.  Shifted Rastrigin function 

In this case the advantage given by LASCA, although real, 

is less pronounced – see Fig. 5 for a case of 300 dimensions.  

D.  Griewank function 

The results obtained in a space of 120 dimensions are 

illustrated in Fig. 6. In this problem, even at high 

dimensionality, EPSO had a particularly fast convergence to 

the global optimum. Because of the particularly fast 

convergence of EPSO, a very low number of iterations in 

Phase A were taken – but this prevented the storage of a 

sufficient number of different particles to accurately train the 

NN.  Lesson: there is no point in adopting the LASCA 

approach if the convergence is fast in the original space S. 

E.  Computing time 

The LASCA approach involves training an autoencoder, 

sometimes a heavy computing requirement. Yet, the cost paid 

for adopting LASCA must be balanced against a very positive 

trade-off in reaching much better solutions. However, the 

additional computing effort seems to be manageable, 

especially if dealing with planning problems. 

In Table 5 one may find an estimation of computing times 

for all the cases reported above, on an average of 10 trials in 

each case, run in a normal laptop computer, with non-

optimized software written to test the methodology. The 

criterion to stop the training of the autoencoder was: 

difference between two consecutive MSE (test dataset) lower 

than 0.00001. 
 

TABLE 5. COMPUTING TIMES ESTIMATED, IN SECONDS EPSO	in	S	 Epochs	NN	 Time	to		train	NN	 LASCA	total	 D	 Name	
1.8	1	1.4	

15	18	19	
4.9	14.7	46.0	

6.7	15.7	47.4	
120	200	300	 Alpine	

1.2	0.6	2	
10	25	19	

38.7	64.7	64.5	
39.9	65.3	66.5	

120	200	300	
Shifted	Sphere	

1.5	1.6	 46	55	 25.9	167.0	 27.4	168.6	 120	300	 Shifted	Rastrigin	1.2	 48	 81.8	 83.0	 120	 Griewank	
VI.  WIND-HYDRO COORDINATION PROBLEM 

A.  General description of the problem 

An experimental confirmation of the potential of LASCA is 

obtained in a wind-hydro coordination (WHC) problem built 

expressly to serve as test bed. The presentation does not aim at 

describing a full-fledged model – but rather to show that the 

technique finds immediate application in Power Systems. 

Compared with the benchmarking functions, this problem is 

more complex: it has a set of linear and non-linear constraints 

while the other were non-linear functions with no constraints. 

The WHC problem, from the point of view of an owner of 

both wind and hydro power stations, aims at maximizing the 

joint operation profit of a power system composed by several 

hydro and wind farms. The maximization is made by changing 

the water volumes to be pumped and released, given a set of 
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specifications defining each scenario. These specifications 

include the wind forecast and the water inflow to the system. 

The operation planning is normally made with multiple 

approaches for different horizons, from the short (days) to the 

long term (years); a medium term (months, year) operation 

planning is considered in the following exercise. This problem 

has obvious similarities with hydro-thermal coordination with 

pumping storage facilities and has a complex time dependent 

formulation if cascading river dams are present.  

The hydro-thermal coordination is a large scale difficult 

problem. Several techniques have been used to deal with it 

such as Lagrangian relaxation [28], Stochastic Dynamic 

Programing [29], Dual Dynamic Programming [30] or Genetic 

Algorithms and Evolutionary Programming [31], to refer to 

early models. Wind-hydro coordination models have also been 

proposed but mostly dealing with short term [32][33][34][35]. 

There is surprisingly little material on medium term operation 

planning in systems with complex cascading hydro power 

stations. An insightful review concerning applications and 

methods, but without wind, is provided in [36]. The test 

problem formulated in this work follows lines similar to many 

deterministic models proposed in the past for hydro system 

modeling.  

A medium term operation planning requires an evaluation 

of the operation for a period up to 1 year. The planning period 

is divided in sub-periods corresponding to different months 

and distinct load levels with different estimated energy costs. 

The dimension of the problem may be very large and it would 

be even larger if a stochastic optimization would be 

considered, taking in account scenarios describing the 

uncertainty in the renewable resources. 

In general terms, the test of the LASCA approach considers 

the optimal operation in a deterministic context, meaning that 

future inflows (water, wind) are taken as known data. This 

problem may be seen as a sub-problem of a stochastic 

optimization formulation. It is composed of an independent 

energy producer that operates a number of cascading hydro 

power plants and manages also wind power plants, treated as a 

single source (energy supplied through the transmission grid). 

Peak and off-peak periods are distinguished. Water can be 

stored in reservoirs during off-peak periods, and used to 

produce energy during the peak periods. The decision to store 

must be weighed against the price of selling directly at the 

moment it is produced in the wind farms. 

As the purpose of the paper is to demonstrate the potential 

and usefulness of the new LASCA technique, not much space 

will be used to describe the subtleties of the real world 

problem or analyze the effects of uncertainties and will 

concentrate on the optimization procedure instead. A test 

system was prepared, inspired in real world cases but not 

representing any particular case. It integrates N=8 cascading 

reservoirs, in an arrangement detailed in Fig. 7, built as an 

expansion from a problem described in [31]. All reservoirs 

except the lower reservoir (except the most downstream one) 

are admitted to be equipped with pumps allowing a certain 

amount of water to be moved up from downstream if 

convenient. 

 
Fig. 7. Scheme for the wind-hydro test power system with a cascading 

arrangement of reservoirs, different in capacity, constraints and inflows. 

 

The final purpose is to assess the value for a coordinated 

wind-hydro operation, by deriving an operation plan that 

maximizes the profit obtained with the operation of the system 

throughout T time periods with different buying and selling 

energy prices. The operation plan will determine: 
o The water to be released/pumped for each hydro power 

plant in each period of time and energy sold or used; 
o The wind energy to be used for pumping and the wind 

energy to be sold to the grid in each period. 
o The amount of water storage in each reservoir and 

storage capacity available for each period of time 

The r time periods are divided in r 2⁄  peak periods and r/2 off-peak periods. A horizon of 6 months (r � 12) is 

considered. Six energy prices are defined for each period, also 

admitting average price forecasting based on market history: 
o Hydro energy selling price at peak and off-peak periods; 
o Hydro pumping price at peak and off-peak periods; 
o Wind energy selling price at peak and off-peak periods. 

The variables are defined in terms of water movement for 

each reservoir in each period. Together, they form the 

chromosome of each particle. Ecological spills or evaporation 

are not considered in this example but present no difficulty to 

be added to the model. 

The solution for this problem may be compared to an 

operation without resorting to pumping (implying the direct 

sale of wind power to the grid without energy transfer between 

time periods). This allows the estimation of the added value of 

the pumping function and may serve as valuable information 

not only for the operation planning of a system but also for the 

assessment of the convenience of having a storage function 

associated to wind power generation. The constraints could 

have been dealt with penalties but the algorithmic process 

assured that the solutions achieved were always feasible. 

B.  The mathematical model 

The electric energy of hydro origin generated in moment % 
by reservoir � is described by uv,w � xv,w[yv�+v �  yv�zv � {v �] ∙ |zv | (8) 

where: 
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uv,w  - the energy generated by the �� reservoir in period % 
if } � %~�����, or the energy consumed if } � 	~�	 (in �y); � – no. of hydro power plants in the system; xv,w - a specified constant for each reservoir, which 

agglomerates the gravitational acceleration (�), the efficiency 

of the turbine (�) and the water density (�): xv,w � � ∙ � ∙ �. 

This constant takes different values for pumping (} � 	~�	) 

and generation (} � %~�����); +v  - the volume stored in the �� reservoir at the beginning 

of the period % (in ��); zv  - volume of water transferred between the �� and the 

immediately downstream reservoirs, at %: it assumes negative 

values for pumping and positive for volumes released (in ��); {v  - volume of water spilled during the period % (in ��); yv�∙� – function returning the estimation of the water head 

(height) given a water volume, for the ��reservoir (in �). 

 

The available water volume for each reservoir is calculated 

for each period considering all the variables associated to the 

n
th

 reservoir: 

+v�� � +v � �v �E[z� � {� ]�∈�
 zv  {v  (9) 

where: �v  –natural inflow (in ��) entering the �� reservoir; Ω – set of reservoirs immediately upstream of the n
th

. 

The EPSO algorithm is applied to optimize a particle �, 

which includes the volumes zv  for each reservoir in each 

moment, with � referring to the total number of reservoirs and r to the total number of time steps. � � [z��, zF�, ⋯ , z�� , ⋯ , z�� , zF� , ⋯ , z�� ] (10) 

Constraints ensuring reservoir capacities 

The simulation starts with water volumes +v  respecting the 

reservoir minimum and maximum capacity limits �v and �v. 

The model must ensure these limits are satisfied in further 

temporal moments. Therefore, the volume of the �� reservoir 

at moment % � 1 must respect: �v � +v�� � �v (11) 

Combining equation (9) and (11), one can obtain the 

dynamic constraints specified in (12) and (13), which are 

applied to each position of �. 

+v � �v �E[z� � {� ]���
 {v  �v � zv  (12) 

+v � �v �E[z� � {� ]���
 {v  �v � zv  (13) 

Constraints ensuring turbine capacities 

For each reservoir, the specifications on the turbines 

installed were considered, which allowed the estimation of 

maximum and minimum volumes they are able to release or 

pump. These constraints are considered in the model as 

represented in  zv��v � zv � zv�H� (14) 

Constraints ensuring the available water to pump 

When the decision to pump water is made, the maximum 

value of volume to pump must also be restricted to the 

available volume in the immediately downstream reservoir 

(IDR). This constraint is only meaningful to the pumping case 

since when releasing water, if the IDR exceeds its maximum 

capacity, the overflow is spilled over. Accordingly, the 

maximum volume of water to pump into the �� reservoir, �v, 
is defined in (15), and constrains zv  as defined in (16). �v � +�-�  ��-� (15) 

�v � zv  (16) 

The wind energy generated per period is estimated as � by 

an external forecasting procedure – and taken as data in this 

WHC example. Its value per period is derived from the wind 

series and each wind farm production characteristic, which can 

be modeled separately from the optimization procedure. In 

fact, as there are no “reservoirs for wind”, the generation 

forecast is a direct function of the wind forecast. An auxiliary 

vector � is considered, where each element �v  refers to the 

available wind energy for the ��reservoir at moment %, and 

this vector is updated as further described.  

Value of the energy produced by the water released 

When zv  is positive (turbining), the corresponding energy 

is calculated from equation (8). The value associated to this 

energy is further calculated by considering the corresponding 

price, depending if the period type is peak or off-peak 

�v,� � �uv,��G ∙ !�,�	uv,��G ∙ !�,�	 	,if	in	a	peak	period							,if	in	an	off-peak	period (17) 

Value of the energy consumed to pump water 

When zv  is negative (pumping), the energy necessary to 

pump is calculated using equation (8). 

Two possibilities may happen here: there is enough wind 

energy available �v , to pump the water, or there is not. 

When there is enough wind (i.e. �v � uv,���� �, �v  is 

used. In this case, the value of the wind energy spent to pump 

is calculated by  

�v,� � �uv,���� ∙ !�,�	uv,���� ∙ !�,�	 ,	if	in	a	peak	period					,	if	in	an	off-peak	period (18) 

If there is not enough wind energy available (i.e. �v �uv,���� ), then the model spends all the available energy from 

wind farms and buys the remainder necessary energy from 

grid (i.e. �� � uv,����  �v). In this situation, equation (18) 

is used to calculate the value of the energy consumed from 

wind farms, and equation (19) is considered to calculate the 

value of the energy bought from grid to pump. 

�v,� � ��uv,����  �v� ∙ !�,�	�uv,����  �v� ∙ !�,�	 ,if	in	a	peak	period						,if	in	an	off-peak	period	 (19) 

For both cases, the wind energy available is updated, to 

give the energy assessment in all reservoirs in the same step. 

Value of the wind energy  

When all reservoirs are assessed for a specified temporal 

moment, the model will calculate the monetary value of the 

available wind energy at that moment, if any is available, 

which is considered to be sold to the grid. This value is 

estimated as defined in  

�v,- � ��v ∙ !-,�					�v ∙ !-,�					 ,	if	in	a	peak	period						,	if	in	an	off-peak	period (20) 

Revenue 
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The revenue obtained with each reservoir is defined as 

 v � � �v,� � �v,�  �v,�  �v,� 	�v,� � �v,�  �v,�  �v,� � �v,- 			,if	� ¡ �,if	� � � (21) 

Once all reservoirs are assessed for all temporal moments, 

the profit obtained with the entire system is calculated as  

 !�V��% � ∑ ∑  v�v9��9�  (22) 

To this Profit, a value associated to the water remaining in 

the reservoirs is added, forming the final fitness function. This 

avoids the depletion of reservoirs in the end of the process. 

C.  Results 

The wind-hydro coordination problem was simulated with 

swarms of 50 particles, with EPSO parameters in � being �� � 0.9 and �	� � 0.7 and in �′ being ��$ � 0.8 and �	�$ � 0.1. The number of iterations used in Phases A, B and 

C were 400/400/200. The autoencoder was trained with 

PROP, with tangent hyperbolic and linear activation functions 

for the hidden and output layers, respectively. Fig. 8 illustrates 

the notorious advantage of adopting LASCA. The final profit 

value obtained by LASCA over 1000 iterations is, for the best 

solution, 28% better than obtained by EPSO alone. The 

computing time was of an average of 150.4 seconds, having 

required 580 NN training epochs to achieve the training 

criterion of delta MSE < 0.00001. 

With LASCA, once in Phase B, an initial deterioration in 

profit occurs, possibly due to the slight loss of information 

incurred with the transition to the reduced space. The 

evolution observed afterwards denotes a progressive increase 

in the profit value till iteration 600, approximately, from 

where stabilization is observed till the end of Part B. The 

transition to Phase C allows a slight new improvement of the 

profit. It is obvious that the metaheuristic alone had a 

premature stagnation. 

The solutions obtained were examined for quality and were 

according to sound engineering judgment, taking in account 

the scenarios built for this experiment. A glimpse may be 

allowed for a particular optimal solution in Fig. 9 and Fig. 10. 

 

 
Fig. 8. Progress of the objective function with LASCA[96-50-96] and 

EPSO[96] for the WHC problem with 8 reservoirs. Average of 10 runs. 

 

 
Fig. 9. Storage in 3 reservoirs. T0 is the initial state. Odd labels are for peak 
periods, even labels are off-peak periods. 

 
Fig. 10. Wind energy Wg sold to the grid and Wp used to pump. 

 
The solutions are very much conditioned by the costs of 

buying/selling energy in each period, as well as the wind 

scenarios and the water inflow regimes. The experiment was 

conceived to illustrate the power of LASCA and no deep 

analysis is detailed in its particular results. 

VII.  CONCLUSIONS 

Metaheuristics are known to lose efficiency in large scale 

problems: the convergence becomes slow and the computing 

effort heavy when the number of variables is large. 

Eventually, the optimum remains unreachable. 

This paper presents, through the testing in benchmark 

optimization functions and in a practical example on the wind-

hydro coordination problem, a novel method to approach the 

solutions of large scale problems with population-based 

metaheuristics, by organizing searches in an equivalent 

reduced dimension search space. 

The model was coined as the LArge SCale optimization 

with Autoencoders approach, or LASCA. The result sought is 

to obtain a much improved solution, when compared with the 

action of the metaheuristic alone, even if paying a price in 

added computing effort. The finesse of the method lies in the 

fact that the evolutionary process acts upon individuals 

represented by chromosomes that are not designed ad-hoc by a 

human; instead, they result from an intelligent coding 

achieved by a first half of an autoencoder, while the fitness 

function is evaluated by decoding the intelligent chromosomes 

with the second half of the same autoencoder. Because the 

clever chromosomes are represented in a space of reduced 

dimension, the optimization process is able to move towards 

different search zones, thus finding better quality solutions. 

LASCA worked well in benchmarking unconstrained 

functions. These served to illustrate how, with LASCA, the 

iterations were able to escape becoming trapped in local 

optima at an early stage. To demonstrate its usefulness in the 

Power Systems domain, a wind-hydro coordination in medium 

term operation planning was also solved. This is a complex 

problem with constraints and spatial and temporal 

dependency, introduced by the cascading hydro power stations 

and the need to represent a large set of time steps.  

The test for LASCA was made with an EPSO algorithm, 

but there is no loss of generality as any other population-based 

method could have been used. The results presented fully 

demonstrate the interest of the technique, which is of general 

application. In fact, it seems that the search in a compressed 

space, achieved by LASCA, may allow the discovery of more 

promising regions than resorting only to the optimization in 

the original problem space with a traditional metaheuristic. 
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