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Abstract – This paper confirms that the network topology 
information lies hidden in the manifold supporting the solutions 
of the power flow equations and that suitable methods may make 
it explicit without direct information on the breaker status. A set 
of methods is applied to the identification of the unknown status 
of a switch, by dealing only with local electric information, and 
their performance efficiencies are compared. One of the methods 
uses optimal subspace projections using metric learning with an 
entropy functional that preserves classification accuracy. The 
results have direct influence on the way one may build local 
topology estimators either in distributed or centralized state 
estimation. 

Index Terms – State Estimation, Power System Topology, 
Entropy, Pattern recognition, Classification., Autoencoders 

I.  INTRODUCTION 

HE growing acceptance of the smart grid concept leads 
inevitably to the need to develop new control designs for 

the electric power system, based on distributed architectures. 
This development may imply heavy investment in sensor and 
measuring devices and any means that may replace in part 
such investment should be considered. 

The definition of the topology of an electric power network 
is an essential step previous to any kind of power system 
analysis. Its importance is highlighted in State Estimation (SE) 
procedures resident in Control Centers running Energy or 
Distribution Management Systems. The emergence of 
distributed control schemes further increases the interest in 
processes that may guess the status of switches or breakers 
without having access to direct information. 

The information on breaker status has a binary form and is 
received at the SCADA system before being used in the SE 
process. However, it may be corrupted, due to sensor 
malfunction, which may lead to wrong topology identification, 
or it may even be absent. When this happens, the information 
on the power flow through the breaker is used to define if it is 
open or closed. This heuristic rule, based on deciding that the 
breaker is closed if some power flow throughput is detected, is 
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however useless if this information is not available. 
The conjecture that the topology information lies hidden in 

the electric data was addressed in previous publications [1][2]. 
The results achieved by adopting a competitive autoencoder 
scheme have been revealing: the information on breaker status 
is indeed spread in the electric variable values and it may be 
retrieved by suitable means. The efficiency of the method is 
therefore of paramount importance. 

This paper addresses the problem of identifying the status 
of a single breaker inserted in a network scheme, assuming 
that training data about the conditions of interest have been 
previously obtained, by means of treating the information 
hidden in local electric variable values. The value of the 
information reported in this paper is threefold: 

1. The theoretical value of, for the first time, 
systematically addressing the problem of breaker status 
identification within a framework of classification of 
topology-induced system states. 

2. The theoretical value of presenting a novel approach to 
identify breaker status based on a sound mathematical 
formulation. 

3. The practical interest of providing to the industry a 
comprehensive assessment of the merits of a set of 
techniques and producing practical solutions to 
identify the status of breakers in the absence of direct 
sensor signals. 

To report the research results achieved, we have 
specifically selected the case of a single breaker inserted in a 
grid. The apparent simplicity of the case is however 
challenged by the complexity of the classification problem. 
The conclusions extracted from such example will serve as the 
foundation for more complex cases in the future. 

The paper addresses a series of possible techniques to 
identify the breaker status from an analysis of local electric 
data, including the heuristic rule referred to above. A special 
focus is given to the novel technique to be described in 
Section IV, which attempts to recognize patterns in a reduced 
space by applying information entropy concepts.  

The test cases were organized by selecting small sub-
networks from the IEEE RTS 24-bus network [3]. All the tests 
are made in the absence of gross errors in the data. Noise is 
also absent, except the one added by the circuit modeling 
(branches with a pi-model) and the power flow routine used to 
solve the power flow equations (a classical Newton-Raphson 
method).  

The most striking result shown is that, even in the absence 
of direct information on branch flows (thus rendering unusable 
the heuristic rule) one is able to retrieve the breaker status 
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information with high accuracy. 

II.  BRIEF REVIEW OF PAST WORK IN BREAKER STATUS 

IDENTIFICATION 

The determination of a single switch or breaker status has 
been traditionally addressed within the framework of State 
Estimation. However, this section will not be reviewing 
general topology identification models with SE, but only 
identifying some models where breaker status identification is 
an almost independent feature. With this focus, several models 
adopting neural networks have been proposed [4][5][6][7][8]. 
Neural networks, with their capacity of being able to be 
trained to recognize patterns in data, are one of the natural 
candidates for the task of recognizing a breaker status within 
electric data. 

In another line of reasoning, one must refer to [9], a true 
topology estimator model which attempts to find out the 
switching branch statuses from analog electrical 
measurements. It also relaxes the binary variables representing 
switches to the [0, 1] interval, but includes them as linearized 
constraints to the SE problem. The problem is then solved for 
these variables only as a TSE problem in the Weighted Least 
Squares sense.  

However, from all literature reviewed, it must be said that 
the publications that display a sharper focus on a local 
estimator model for breaker status estimation are [1][2], where 
a competitive arrangement of local auto-associative neural 
networks or autoencoders is presented as a tool with an 
extremely high rate of success. 

III.  MODELS BEING COMPARED 

This section briefly describes the models that were put in 
competition to identify the status of a breaker in the absence of 
a breaker status signal. One assumes that active and reactive 
power measurements for line flows and bus injections/loads 
are available, to a higher or lesser extent – for instance, from 
the data collected at the SCADA in a control center. No 
voltage information is used in the work reported. 

A.  Linear Discriminant Analysis - LDA 

The linear discriminant analysis (LDA) is a statistic that 
finds a linear combination of features which (linearly) 
separates the classes of objects or events. LDA is well-known 
in the machine learning field and it is a parametric technique, 
that is, it explicitly uses a Gaussian data model to find the 
differences between the classes of the data. 

It assumes that the cases of a class k are generated 
according to some probability distribution ߨ௞ ൌ ሺܻ݌ ൌ ݇ሻ and 
its predictor variables are generated by a class-specific 
multivariate normal distribution (each class is a spherical 
cluster) 

ܺ|ܻ ൌ ݇~ܰሺߤ௞, Σ௞ሻ 
i.e. 
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The LDA predicts the outcome as follows: 

 ෠ܻ |ܺ ൌ ݔ ≔ ሻݔ௞ሺ݌௞ߨ	௞ݔܽ݉݃ݎܽ ൌ  ሻ (1)ݔ௞ሺߜ	௞ݔܽ݉݃ݎܽ
with the discriminant functions: 
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Here, 〈ݔ െ ,௞ߤ Σ௞
ିଵሺݔ െ  ௞ሻ〉 is called the Mahalanobisߤ

distance of x and ߤ௞. Thus, LDA can be described as prototype 
method, where each class k is represented by a prototype ߤ௞ 
and cases are assigned to the class with the nearest prototype. 

The variance matrix estimated by LDA can be used to 
linearly transform the data such that the Mahalanobis distance 
,ݔ〉 Σିଵݕ〉 becomes the standard Euclidean distance in the 
transformed coordinates 〈ݔᇱ, 〈ᇱݕ ൌ  This is accomplished .ݕ்ݔ
by decomposing Σ෠ as Σ෠ ൌ  ܷ with orthonormal matrix ்ܷܦܷ
(i.e., ்ܷ ൌ ܷିଵ) and a diagonal matrix ܦ and setting ݔᇱ ൌ

ଵିܦ ଶൗ  .ݔ்ܷ

 
Fig. 1: For a 2-class problem, this plot shows three possible boundaries by 
linear discriminant analysis. The data is merely representative. 

B.  Quadratic Discriminant Analysis – QDA 

In the most general case, decision boundaries are quadratic 
due to the quadratic occurrence of x in the Mahalanobis 
distance. This is called quadratic discriminant analysis (QDA). 
The difference between LDA and QDA is that now the 
covariance matrix can be different for each class (the classes 
can have a non-spherical cluster), as such, we will estimate the 
matrix Σ௞ separately for each class k, ݇ ൌ 1,2,… ,  .ܥ

The classification rule is similar to (1) and we also seek for 
the class k which maximizes the quadratic discriminant 
function (2). 

Because it allows for more flexibility for the covariance 
matrix, the QDA tends to fit the data better than the LDA, but 
then it has more parameters to estimate. 

C.  Regression tree (RT) 

This subsection presents a particular kind of nonlinear 
predictive model: regression trees (RT). 

As a general term, linear regression is a global model, 
where there is a single predictive formula holding over the 
entire data space. When the data has lots of features which 
interact in complicated, nonlinear ways, assembling a single 
global model can be very difficult, and hopelessly confusing 
when you do succeed. An alternative approach to nonlinear 
regression is to sub-divide, or partition, the space into smaller 
regions, where the interactions are more manageable. We then 
partition the sub-divisions again - this is called recursive 
partitioning - until obtaining chunks of the space which are so 
tame that we can fit simple models to them. The global model 
thus has two parts: one is just the recursive partition; the other 
is a simple model for each cell of the partition. 

RT use a tree to represent the recursive partition. Each of 
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the terminal nodes, or leaves, of the tree represents a cell of 
the partition, and has attached to it a simple model which 
applies in that cell only. A point x belongs to a leaf if x falls in 
the corresponding cell of the partition. To figure out which cell 
we are in, we start at the root node of the tree, and ask a 
sequence of questions about the features. The interior nodes 
are labeled with questions, and the edges or branches between 
them labeled by the answers. Which question we ask next 
depends on the answers given to previous questions. An 
example of a regression tree is illustrated in Fig. 3. 

All the data processing for the LDA, QDA and RT 
approaches was performed off-line using a commercial 
software package named Statistics from the MATLAB 
R2012a, The MathWorks Inc., Natick, MA, 2013 [10]. 

 

 
Fig. 2: For a 2-classes problem, this plot shows two possible boundaries by 
quadratic discriminant analysis. The data is merely representative. 

 
 

 
Fig. 3: Regression tree example for classification of a local breaker within a 
network topology. The variables are merely representative. 

 

D.  Autoencoders (AE) 

An alternative to the previous methods was presented in 
[2], based on a competitive arrangement of autoassociative 
neural networks (or autoencoders). 

IV.  METRIC LEARNING USING CONDITIONAL ENTROPY 

The previous methods are all based on probability density 
functions (pdf) estimation. The parametric methods (LDA, 
QDA and RT) assumed a data distribution (Gaussian with 
equal cluster covariance, Gaussian with different cluster 
covariance and uniform) in which the model is based and 
developed. The non-parametric method (autoencoder) does not 
impose a model to the underlying distribution of the data, but 

resorts to pdf Parzen density estimation during the training 
phase. Until now, these kernels methods have been the most 
utilized descriptors of a pdf of the data in a non-parametric 
setting. 

Positive definite kernels have been employed in machine 
learning as a representational tool allowing algorithms that are 
based on inner products to be expressed in a rather generic 
way [11] – known as kernel methods. Let ࣲ be a nonempty 
set. A function ϰ:	ࣲ	x	ࣲ ↦ Թ is called a positive definite 
kernel if for any finite set ሼݔ௜ሽ௜ୀଵ

ே ⊆ ࣲ and any set of 
coefficients ሼߙ௜ሽ௜ୀଵ

ே ⊂ Թ , it follows that ∑ ,௜ݔ௝ϰ൫ߙ௜ߙ ௝൯௜,௝ݔ ൒
0, if at least one i, ߙ௜ ് 0. In this case, there exist an implicit 
mapping ߶:ࣲ ↦ ࣢ that maps any element ݔ ∈ ࣲ to an 
element ߶ሺݔሻ in a Hilbert space ࣢, such that ϰሺݔ, ሻݕ ൌ
〈߶ሺݔሻ, ߶ሺݕሻ〉. The above map provides an implicit 
representation of the objects of interest that belong to the set 
ࣲ. This is possible as long as a kernel function is available. 
Therefore, (see Appendix) the Gram matrix obtained from 
evaluating a positive definite kernel on samples can be used to 
define a quantity based on the data with properties similar to 
those of an entropy measure without assuming that the 
probability density is being estimated. 

We can thus apply the matrix framework to the problem of 
supervised metric learning, namely the breaker status 
identification. This problem can be formulated as follows. 
Given a set of points ሼሺݔ௜, ݈௜ሻሽ௜ୀଵ

ே , we seek a positive 
semidefinite matrix ்ܣܣ, that parametrizes a Mahalanobis 
distance between samples ݔ, ᇱݔ ∈ Թௗ as ݀ሺݔ, ᇱሻݔ ൌ
ሺݔ െ ݔሺ்ܣܣᇱሻ்ݔ െ  ᇱሻ. The goal is to find a parametrizationݔ
matrix ܣ such that the conditional entropy of the labels ݈௜ 
given the projected samples ݕ௜ ൌ ௜ݕ ௜ withݔ்ܣ ∈ Թ௣ and 
݌ ≪ ݀, is minimized. This can be posed as the following 
optimization problem: 

minimize
ܣ ∈ Թௗ௫௣ ܵఈሺܮ|ܻሻ (3) 

subject to: 
௜ݔ்ܣ ൌ ,௜ݕ ݅	ݎ݋݂ ൌ 1,… ,ܰ;

ሻ்ܣܣሺݎݐ ൌ ,݌
 

where the trace constraint prevents the solution from growing 
unbounded. According to [11], we can translate this problem 
to the matrix-based framework in the following way. Let K be 
the matrix representing the projected samples 

௜௝ܭ  ൌ
ଵ

ே
݌ݔ݁ ቆെ

൫௫೔ି௫ೕ൯
೅
஺஺೅൫௫೔ି௫ೕ൯

ଶఙమ
ቇ (4) 

with  as free parameter and L be the matrix of class co-

occurrences where ܮ௜௝ ൌ
ଵ

ே
	݂݅	݈௜ ൌ ௝݈ and zero otherwise. The 

conditional entropy can be computed as ܵఈሺܮ|ܻሻ ൌ
ܵఈሺܰܭ ∘ ሻܮ െ ܵఈሺܭሻ, and its gradient at A is given by: 

 ்ܺ൫ܲ െ ݀݅ܽ݃ሺܲ1ሻ൯ܺ(5) ܣ 

where 

 ܲ ൌ ൫ܰܮ ∘ ܭఈሺܰܵ׏ ∘ ሻܮ െ ሻ൯ܭఈሺܵ׏ ∘  (6) ܭ

and 

ሻܣఈሺܵ׏  ൌ
ఈ

ሺଵିఈሻ௧௥ሺ஺ഀሻ
ܷΛఈିଵܷ∗,݄ݐ݅ݓ	ܣ ൌ ܷΛܷ∗ (7) 

Note that instead of computing the full set of eigenvectors 
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and eigenvalues of ܣ, we can approximate the gradient of ܵఈ 
by using a few leading eigenvalues. 

Finally, we can use an algorithm of the gradient descent 
type to search for ܣ iteratively. After settling on a projection 
matrix ܣ, the original space ࣲ can be projected onto the space 
ruled by ܣ, say ࣳ. One may then look for patterns in the 
transformed space ࣳ, applying a classifier, without ever 
estimating the data pdfs in the high dimensional space. One 
can expect to obtain similar results with minimum degradation 
but with a somewhat easier calculation process due to the 
space dimension reduction achieved. 

V.  RESULTS – COMPARATIVE TESTS 

A.  Database 

The numerical results from the case study are based on the 
24-bus system [3] (Fig. 4), including: 

a) Insertion of breakers in 10 locations of the network; 
b) Design of a cumulative load curve with data from [3], 

based on which load levels are sampled and a large 
variety of scenarios from valley to peak of the load 
curve are constructed; 

c) Random	 sampling	 of	 feasible	 power	 generation	
values;	

d) Breaker	 status	 randomly	 defined	 for	 each	
generation/load	scenario;	

For	 each	 scenario,	 the	 power	 flow	 equations	 were	
solved.	 Then,	 simulation	 real	 world	 conditions,	 Gaussian	
noise	was	further	added	to	the	power	flow	solutions,	with	
standard deviation ߪ ൌ	0.01	p.u,	(1	p.u.	corresponds	to	100	
MVA).	
Thousands	 of	 scenarios	 were	 thus	 collected	 and	

analyzed.	 Then,	 for	 each of the ten breakers identified in 
Fig.4, a set of adjacent power measurements was chosen as 
defining the local measurement set for each breaker (only 
active/reactive power injection and flow measurements were 
used).  

B.  Identification of a Single Breaker Status – Local 
Measurements including breaker power throughput 

Including	 the	 breaker	 active	 and	 reactive	 power	
throughput	 in	 the	 local	 measurement	 set	 allows	 one	 to	
verify	 the	 efficiency	 of	 the	 classification	methods	 against	
the	 traditional	 heuristic	 rule:	 "if	 the	 flow	 is	 zero,	 the	
breaker	is	open,	otherwise	it	is	closed".	We	have	examined	
the	 values	 of	 the	 power	 flows	 in	 each	 line	 with	 an	 open	
breaker,	and	determined	an	interval	of	small	amplitude	of	
the	 flows	 associated	 to	 an	 open	 device	 (flows	 are	 not	
exactly	 zero,	 even	 if	 the	 breaker	 is	 open,	 due	 to	 reactive	
currents	 and	 derived	 losses	 in	 the	 line,	 lack	 of	 absolute	
precision	 in	 numerical	 calculations,	 and	 also due to 
Gaussian noise added in order to mimic the real 
measurements).	
Table	I	displays	the	results	of	status	identification	with	

several	techniques	for	each	of	the	10	breakers,	on	a	sample	
of	 10,000	 scenarios	 considering	 the	 totality	 of	 the	 local	
measurement	 set	 of	 a	 particular	 breaker.	Krstulovic et al. 

[2] showed interesting results using a framework of 
competitive autoencoders. The application of the technique to 
the same data as with the other techniques is also in Table I. 
The last column refers to a classifier (QDA) applied after a 
space dimension reduction via the technique descried in 
Section IV.	

 
 

Fig. 4. IEEE RTS 24 with indication of the branches where 10 switches were 
introduced and the local areas of measurement collection for each breaker. 

 
TABLE I: COMPARISON OF LOCAL STATUS IDENTIFICATION METHODS WITH 

LOCAL MEASUREMENTS IN 10,000 SCENARIOS 

Breaker

Method (efficiency = no. correct/10,000 in %) 
Projection 
Matrix A 

LDA 
Eucl. 

LDA
Mah.

QDA RT AE Heur. 
Entropy 
foll. by 
QDA 

Reduced/ 
Original  

space 
1 100 100 100 99.90 100 99.96 100 12/14 
2 86.1 92.55 99.98 99.91 99.27 99.99 99.94 16/18 
3 65.69 79.10 99.92 99.75 99.13 99.90 99.82 14/16 
4 99.99 99.99 100 100 100 99.99 100 14/16 
5 99.98 100 100 100 100 100 100 12/14 
6 99.69 99.98 100 100 100 100 99.50 12/14 
7 99.47 100 100 100 100 100 100 14/16 
8 96.75 98.85 100 99.92 100 99.97 100 12/14 
9 99.62 100 100 99.96 100 99.98 100 14/14 

10 99.28 99.95 100 99.92 100 99.96 99.99 16/16 

Avg. 94.66 97.04 99.99 99.94 99.84 99.98 99.93 
11% 

reduction 

 
The QDA classifier provided the best results. The heuristic 

rule failed in more cases because in some instances the flow 
through the breaker is very small due to almost equal nodal 
voltages and this causes confusion in the diagnosis. 

These results are convincing in the sense that they 
demonstrate that information gathered from a vector of 
measurements can compete with the heuristic rule (based on 
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information on flows through a breaker) in deciding if a 
breaker is open or closed. The QDA technique allowed even a 
marginally better result, likely deriving from dealing with 
more information that just breaker flows.  

The last technique shows that some space dimension 
reduction is possible with negligible loss of precision. 
However, the dimension reduction permitted to maintain 
quality was only of 11% on average. 

C.  Excluding the direct Active and Reactive Power Flows 

The value of the pattern recognition approach is enhanced 
however in the case of an absence of information on the power 
flows through the breaker – when no heuristic rule may be 
used. If the active and reactive power flows were eliminated 
from the data set (reproducing a case of missing signals in the 
SCADA), would it still be possible to establish a correct 
diagnosis? 

Table II presents the results of the status identification for 
each of the same 10 breakers and on the previous sample of 
10,000 distinct scenarios with breaker flows removed.  

 
TABLE II: COMPARISON OF LOCAL STATUS IDENTIFICATION METHODS WITH 

LOCAL MEASUREMENTS EXCLUDING THE POWER FLOW DIRECTLY 

CONNECTED TO THE BREAKER 

Breaker 

Method (efficiency = no. correct/10,000 in %) 
Projection 

Matrix 

LDA 
Eucl. 

LDA 
Mah. 

QDA RT AE 
Entropy 
foll. by 
QDA 

Reduced/ 
Original  

space 
1 100 100 100 98.72 100 100 12/12 
2 83.16 90.83 99.60 83.45 97.40 99.57 16/16 
3 58.68 77.51 99.31 96.28 98.79 99.15 12/14 
4 99.99 99.98 100 99.61 100 99.73 12/14 
5 99.98 100 100 99.72 100 100 12/12 
6 82.16 80.51 85.56 76.52 100 83.27 10/12 
7 99.44 100 100 97.02 100 100 14/14 
8 86.33 93.79 99.99 94.60 100 100 12/12 
9 96.09 100 100 99.27 100 100 12/12 

10 95.58 99.76 99.94 97.48 100 99.88 14/14 

Avg. 90.14 94.24 98.44 94.27 99.62 98.16 
5% 

reduction 

 
The method using competitive AE proposed in [2] is now 

the best performing, closely followed by the QDA classifier, 
either applied in the original measurement space or in a 
reduced space after the method described in Section IV. It is 
interesting to notice that Breaker 6 emerges as a difficult case 
for the classical methods but not for the AE method. 

The conclusion is unequivocal: it is indeed possible to 
recognize patterns in the electric power flows, associated with 
topologic states. And, given enough measurements, the 
accuracy in classification is remarkable: in 8 out of 10 
breakers studied, no erroneous classification could be found in 
10,000 random scenarios for each case in the case of the AE!  

D.  Remote Measurements 

The impact of the input measurements choice is crucial to 
the efficiency of the method. Without discussing an 
optimization of the choice of the measurement set, it is 
however not at all proved that the topology information is 
merely local. On the contrary, the work in [2] already hints 

that at least partial information on breaker statuses is still 
present in remote data.  

To test this hypothesis, we selected a set of measurements 
non-adjacent to each breaker similar to the ones reported in 
[2]. Fig. 5 exemplifies the remote power flow measurements 
chosen as inputs in the case of the breaker 6: 14 remote 
measurements (active and reactive power flows) were chosen. 
A similar procedure was adopted to select the measurements 
for the other 9 switches. 

 

 
Fig. 5. Partial representation of the IEEE RTS 24 system, for the remote 
identification of breaker 6 status. Flow measurements are available only for 
full lines and not for dashed lines. 

 
TABLE III: COMPARISON OF DIFFERENT METHODS FOR STATUS 

IDENTIFICATION WITH REMOTE DATA ONLY  

Breaker

Method (efficiency = no. correct/10,000 in %)
Projection 

Matrix 

LDA 
Eucl.

LDA 
Mah.

QDA RT AE 
Entropy 
foll. by 
QDA 

Reduced/ 
Original  

space 
1 76.22 78.48 80.12 74.26 63.83 76.64 10/12 
2 68.97 68.42 75.08 65.1 65.40 72.67 16/18 
3 58.47 67.44 75.49 60.18 60.81 71.17 18/20 
4 98.44 98.06 99.21 94.23 92.51 99.22 16/18 
5 65.05 63.58 65.60 45.92 57.33 62.72 14/14 
6 99.23 99.06 99.24 98.64 99.18 99.20 14/14 
7 60.79 59.23 58.91 44.28 55.83 58.95 12/12 
8 80.48 81.97 92.57 77.33 75.27 91.99 10/10 
9 53.51 54.67 54.92 39.72 53.02 53.60 10/12 
10 79.33 76.09 86.33 70.98 89.57 86.05 10/10 

Avg. 74.05 74.70 78.75 67.06 71.28 77.22 
7% 

reduction 

 
The results in Table III show that the QDA classifier, either 

applied in the original measurement space or in the reduced 
space (using the Gram matrix model referred to in Section IV, 
with 7% reduction in space dimension) performs better than 
the other classifiers. One could not achieve a convenient 
training of the AE that would match the classifying precision 
of QDA or LDA.  

The number of misclassified cases is bigger than in the 
previous studies, which was expected – it is still a good 
number, quite remarkable in fact. This confirms the hypothesis 
that there is still significant information on the breaker status 
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in a set of non-adjacent measurements.  
The RT method is the worst performing model, now. 
Much can be learned from the comparative analysis of 

Tables II and III. Take, for instance, Breakers 5 and 6 – the 
classification efficiency in B6 is always extremely high, while 
the efficiency for breaker B5 suffers from severe degrading 
when the local measurement set is ignored. This is a clear 
indication that simple engineering judgment is not enough to 
select the most adequate set of measurements to associate with 
topology states. 

E.  Metric learning in remote measurements 

This problem without a direct branch measurement and 
with remote measurements is the most challenging one and 
therefore we made a deeper investigation into the possibility 
of classification in a reduced space, with the projections 
discovered with the Gram matrix/Entropy method described in 
Section Error! Reference source not found. With the 
determination of a projection matrix ܣ, we found the best 
projection space of dimension. Into this we applied three 
different classifiers in order to identify the class labels for the 
10,000 scenarios for each one of the 10 breakers: QDA, LDA 
Euclidian-based and LDA Mahalanobis-based.  

According to [11], the higher entropy order ߙ emphasizes 
the parts of the space with higher data densities. Since we do 
not have any prior knowledge or assumption on the breakers 
statuses, we choose ߙ close to 1. As such, the following 
experiments used an entropy’s order ߙ ൌ 1.01. 

Fig. 6 shows the performance curve acquired for the 
different classifiers in the metric learning projection, 
discovered by applying the model in Eq. (3), by changing the 
free-parameter in (4) within the set 

ߪ ൌ ൛0.001, 0.01, 0.05, 0.1	,1	, √2, 2,5ൟ  
which defines the scale of the similarity in the RKHS. 

We can see that we have a quality threshold for the ߪ 
parameter: values greater than 0.01 affect negatively the 
classifier’s performance. The smaller the parameter ߪ is (down 
to a certain value), the better the classification efficiency 
becomes. We observed that the algorithm’s accuracy 
converges for ߪ ൑ 10ିଷ until computational/numerical 
problems occur (for values near ߪ ൌ 10ିଶ଴଴). 

We have repeated this exercise for LDA-Euclidian and 
LDA-Mahalanobis with the same general result. Table IV 
presents the results acquired for the same 10,000 test scenarios 
using a training set of 500 random scenarios and adopting a 
small enough value for  ( = 0.001). 

This study confirms that linear discriminants are not the 
best choice for a classifier in the problem of recognizing 
topology patterns in electric power data. Breaker 6 is still the 
easiest case – in fact, so easy that a LDA-Euclidian based 
model could slightly outperform the QDA model. 

This argues in favor of the statement that each breaker 
location is a challenge on its own. And the spreading of 
information throughout the electric power data is uneven and 
strongly depends on the structure of the network. The 
challenge is therefore open to discover the optimal sets of 
measurements containing information of a breaker status. 

 

 
Fig. 6. Classification efficiency, using a QDA classifier, over the test 
scenarios projected with the learned metric governed by matrix A. Obviously, 
the highest efficiencies are obtained for  < 0.01. 

 
TABLE IV: STATE ESTIMATION RESULTS USING THE ENTROPY-MATRIX 

FRAMEWORK OF ORDER ߙ ൌ 1.01 FOR ߪ ൌ 0.001 FOLLOWED BY THREE 

CLASSIFIERS. 

Breaker 
Entropy-matrix Framework followed by 

QDA 
LDA Euclidian-

based 
LDA Mahalanobis-

based 
1 76.64% 74.74% 76.47% 
2 72.67% 67.13% 69.50% 
3 71.17% 56.15% 63.70% 
4 99.22% 98.28% 98.30% 
5 62.72% 64.74% 59.13% 
6 99.20% 99.21% 99.08% 
7 58.95% 60.37% 59.08% 
8 91.99% 80.10% 83.94% 
9 53.90% 53.25% 53.59% 
10 86.05% 79.23% 77.67% 

Average 77.22% 73.32% 74.05% 
 

VI.  CONCLUSIONS 

The notion that the information on grid topology is 
embedded in the electrical data is intuitive. However, until 
now it was not demonstrated that it could be extracted reliably. 
But the experiments reported in this paper prove that electric 
data are indeed topology patterns – because several techniques 
identify such patterns, with a variety of degrees of accuracy.  

The paper addresses several techniques competing for 
breaker status estimation, to add to an earlier proposal using 
autoencoders. The experiments reported show that the choice 
of an extraction technique is important if one aims at a highly 
accurate determination of a breaker status. After this work, 
one strongly believes that the area is open to research on the 
most efficient model to classify topology states within sets of 
electric data. 

In industrial software applications, one presently resorts to 
heuristic rules (such as "if the branch current is zero then the 
breaker is open"), to guess a breaker status in the case of 
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missing status signals. But as a consequence of the 
confirmation that topology information lies hidden in electric 
data, one may now confidently foresee a time when an 
intelligent agent will be in charge of identifying a breaker 
status from the pattern of electric data.  

Furthermore, the assessment of such an agent is local, in 
the sense that it may rely on local data. This makes the 
technique suitable for building up a distributed topology state 
estimator. Or, in the absence of local data, a remote agent may 
still be able to produce an estimation for a breaker status, 
although with a lesser degree of accuracy. So, the loss of 
telemetry does not mean that one gets totally blind over the 
state in a section of a network. 

 An alternative use to the technique is as a complementary 
estimator to signals actually received at the SCADA in a 
control center, either confirming the status or setting up an 
alarm flag for possible gross error in data. A number of 
interesting applications of the principle investigated in this 
paper may be foreseen. 

It must be highlighted that all the remarkable results 
reported in this paper were obtained with measurement sets 
contaminated by noise. This means that the topology pattern 
recognition is robust to noise such as the one that may be 
encountered in system control centers and that its integration 
with traditional State Estimation techniques may be foreseen. 

Furthermore, these results were obtained from 
measurements sets including active and reactive powers only. 
It is likely that the addition of voltage measurements may 
indeed improve the quality of the pattern recognition process. 

We have also shown that the difficulty of the task increases 
with the distance from the breaker to the measurements, which 
can be expected because each breaker status appears mixed 
differently by the circuit until the measurement. Consequently, 
the classification becomes progressively and unevenly harder 
and strongly depends on the structure of the network. This is 
where nonlinear projections and information theoretic 
quantities that fully utilize the information in the data will 
become more appealing. 

This opens a new challenge: to adopt approaches to 
discover optimal sets of measurements that may maximize the 
efficiency in topology pattern recognition. While the subject 
was not addressed in the paper, we believe that such research 
has now a clearer purpose and benefits from more work. 

 

VII.  APPENDIX – RENYI’S ENTROPY AXIOMS AND AXIOMS 

FOR GRAM MATRICES 

Information theoretic learning [12] showed that Renyi’s 
second-order entropy has practical estimation advantages with 
respect to Shannon’s entropy. An empirical plug estimator of 
Renyi’s second-order entropy based on the Parzen density 
መ݂ሺݔሻ ൌ ଵ

ே
∑ ,௜ݔሺߢ ሻݔ
ே
௜ୀଵ , can be obtained as follows: 

 െ log ଵ

ேమ
∑ ∑ ݄൫ݔ௜, ௝൯ݔ

ே
௝ୀଵ

ே
௜ୀଵ   (3) 

where ݄ሺݔ, ሻݕ ൌ ׬ ϰఙሺݔ, ,ݕሻϰఙሺݖ ࣲݖሻ݀ݖ . Since h is a positive 

definite kernel, there exists a mapping ߶ to a Reproducing 

Kernel Hilbert Space (RKHS) such that hሺݔ, ሻݕ ൌ
〈߶ሺݔሻ, ߶ሺݕሻ〉; and the argument of the logarithm in (3), called 
the information potential [11], can be interpreted in this space 
as the mean square value of RKHS elements: 

 ർଵ
ே
∑ ߶ሺݔ௜ሻ
ே
௜ୀଵ , ଵ

ே
∑ ߶ሺݔ௜ሻ
ே
௜ୀଵ ඀ ൌ ቛଵ

ே
∑ ߶ሺݔ௜ሻ
ே
௜ୀଵ ቛ

ଶ
 (4) 

with the limiting case given by ‖ܧሾ߶ሺܺሻሿ‖ଶ. Thus, we can 
think of this estimator as a statistic computed on the 
representation space provided by the positive definite kernel h. 

Now, let us look at the case where ϰఙ is the Gaussian 
kernel; if we construct the Gram matrix K with elements 
௜௝ܭ ൌ ϰଶఙ൫ݔ௜,  ௝൯, it is easy to verify that the estimator ofݔ
Renyi’s second-order based on (3) corresponds to: 

෡ଶሺܺሻܪ  ൌ െ log ൬
ଵ

ேమ
ሻ൰ܭܭሺݎݐ ൅  ሻ (5)ߪሺܥ

where ܥሺߪሻ takes care of the normalization factor of the 
Parzen window. As we can see, the information potential 
estimator can be related to the norm of the Gram matrix K 
defined as ‖ܭ‖ଶ ൌ  ሻ. This reasoning can beܭܭሺݎݐ
generalized. 

Real Hermitian matrices are considered generalizations of 
real numbers. It is possible to define a partial ordering on this 
set by using positive definite matrices, which admit spectral 
decompositions [13]. When these matrices are normalized by 
their trace their eigenvalues add to one; it turns out that the 
Gram matrix of projected data for specific kernels obey these 
properties. Therefore, [11] defines operators in these RKHS 
that obey the same axiomatic properties of entropy as defined 
by Renyi. 

Consider the set ∆௡ା of positive definite matrices ܣ ∈ ௡ࣧ 
for which ݎݐሺܣሻ ൑ 1. It is clear that this set is closed under a 
finite convex optimization and the following proposition was 
proven in [11]. 

 
Proposition Let ܣ ∈ ∆௡ା and ܤ ∈ ∆௡ା and also ݎݐሺܣሻ ൌ

ሻܤሺݎݐ ൌ 1. The functional 

ܵఈሺܣሻ ൌ
1

1 െ ߙ
 ,ఈሻሿܣሺݎݐଶሾ݃݋݈

satisfies the following set of conditions: 

i. ܵఈሺܲܣ∗ܲሻ ൌ ܵఈሺܣሻ for any orthonormal matrix 
ܲ ∈ ௡ࣧ. 

ii. ܵఈሺܣ݌ሻ is a continuous function for 0 ൏ ݌ ൑ 1. 

iii. ܵఈ ቀ
ଵ

ே
ቁܫ ൌ  .ଶܰ݃݋݈

iv. ܵఈሺܣ⊗ ሻܤ ൌ ܵఈሺܣሻ ൅ ܵఈሺܤሻ. 

v. If ܤܣ ൌ ܣܤ ൌ ૙; then for the strictly monotonic 
and continuous function ݃ሺݔሻ ൌ 2ሺఈିଵሻ௫ for 
ߙ ് 1 and ߙ ൐ 0, we have that: 

ܵఈሺܣݐ ൅ ሺ1 െ  ሻܤሻݐ

ൌ ݃ିଵ ൬݃ݐ൫ܵఈሺܣሻ൯ ൅ ሺ1 െ ሻ݃ݐ ቀ݃ݐ൫ܵఈሺܤሻ൯ቁ൰. 
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In conclusion we define an operator in RKHS that is 
estimating entropy directly from projected data, without ever 
estimating the pdf. This is the basis of the metric learning 
optimization used in the paper to find sub space projections. 
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