TEC

LASCA

Large Scale Computing with
Autoencoders - Application to Power
Systems

PTDC/EEA-EEL/104278/2008

LASCA is a research project on a new
procedure to speed up and improve
convergence of meta-heuristics in
Large Scale problem optimization.

Final Report
Oct. 2013

INESCTEC

Final report describing activities, experiments, tests and results from the work developed at INESC
Technology and Science, Associate Laboratory in the framework of the LASCA project funded by FCT — the

Foundation for Science and Technology.

LASCA Project — Final Report

Contents

LASCA - Large Scale Computing with Autoencoders - Application to Power Systems 1

Project LASCA / Final Report 1

1 EXECUTIVE SUMIMARY ...ttt ettt ettt e e e e e ettt e e e e e e s ettt e e e s e s anbebeeeeeeeaaaanbeeeeeeeeeaannbnbaeeeeeeeaannne oe 1
2 INTRODUGCTION .euitittetteeteesiteeite sttt sttt st ettt et e bt et esbeesbeesheesaeesasesabesmeeemte e bt enbeenbeesbeeaseesmeesmeesnees eenmeesseens 2
3 PROJECT PLANNING AND ITS COMPLETIONciiuiiiiiieiieieeteetee ittt ettt st st sttt e esbe b e b e nneenns 3
3.1 State of the art in QULOENCOTENSc..iiiiieiieiieee ettt sttt et 3
A I - 101 [T a1V oY= aTlo o [T TSP 3
3.3 Software platform developPMENT......c..uvi i e e e e ae e e e earaeas 4
3.4 Hybrids autoeNnCOAEr — EPSO........ciiiiiiiiicieee ettt ee ettt e et e e e e e st e e e s stae e e essaaeeeensaeeesnsraeesnnsaneas 4
3.5 Tests in real world [arge scale POWETr SYSTEMiiiiiiiiiiiiiee ettt e e 4
3.6 DISSEMINATION 1.t e e e s e e s st e e e s r et e e s e e e e s s r e e e e s anree e e sanreeeeen eeenanee 5
I A =T o F= T I 2 =T o Yo PR 5
4 ADVICE FROM THE EXTERNAL PROJECT CONSULTANT ..cetttitireieeereieeieeeeeeeeeeeeeeeeeeeereeereseeeeeeeeeeeeeeeeaasaaaaananens 5
5 RELATION WITH OTHER PROJECTS SUPPORTED BY FCT ..ottt ettt et e e e e e 6
6 CONCLUSIONS ...ttt ettt ettt e e e e ettt e e e e e e e e e bttt e e e e e e abe bt e e e e e e e aaanbeeeeeeee e e ansnbeeeeeesaaannne 2eesaannnrenes 7
Publications8

PhD Theses 10
External Consultant Reports 11
Application of autoassociative neural networks to solve large scale problems in power systems 15

Report LASCA /R1 15

A 1 1 Lot AR 15
30 A Lok o Yo [¥ Tt oY o W 15
1A o 1Y oY To 1YY o] o] e - ol o VPSPPI 16

LASCA Project — Final Report i

10 3 GeNeral SPECITICATIONS ..uvviiiii it e e e e et e e e e e e e ettt a e e e e e e eeesassteeeeaeeessnnssaeeeeassannnnes 18

N [oY [T=IN o1 U Vot [o USRI 19
125 ROSENDIOCK FUNCLION ..iiiiiiieeee ettt ettt et st st e sbe e e st esabe e e bee e sbeesabeesneeesnreenns 25
136 GrieWanK FUNCHION.....ciiiiieee et e s bt e s b e e ne e e smteesareeeneeenns 27
I Y o] =Y o I oV o Vot [o S 30
15 8 Shift RaStrigin FUNCLION.....ccii et e e e e e e e e s st re e e e e e e e e nnnreaeeeeeeennnnns 33
169 Shift SChWefel FUNCLION ...coiuiiiiiiiiee bbbt s 35
17 10 Shift SPhEre FUNCLION ...oiiieieee ettt ettt e e e st e e e e ate e e e e bt e e e e sataeeeesteeeeenreeeeennses 38
18 11 Hydro-Wind Problemi. ... ettt e e e tte e e e et e e e e s at e e e e eabte e e eenbaeeeenteeaennsees 41

18.111.1 Problem formulationcoceoieiieieeee e s 42

18.2 11.2 Hydro-Wind problem With 8 RESEIVOIIS........ccccuviriieiie ittt esrrre e e e e e sarraeeeee e 46

18.3 11.3 Hydro-Wind problem With 12 RESEIVOIIS.......ccccuvveieeieiiiiiieeee ettt e e e eesaaraeeeee e 48
RS I =T o] [To = =T o] o1V 2SS 50

Breakers’ state estimation using autoassociative neural networks 52

Report LASCA /R2 52

20 ADSTIACE 1netieetie ettt ettt ettt e e e he e e h e e e s bt e e he e e b et e s bt e s be e e hbeeehbeeeabeeebe sabeesabeeebeeenee 52
21 1 INErOTUCTION ettt et st e st e ebe e e st e s e s be e e ame e e sabeesabeeeareeesmneesareeenn esareesane 52
D A o o o] 1= o T B LT ol o] [o PSP SSR 53
D 0t A - 1Y STy ¥ o 1Y SRS 53
22.2 2.2 CASE SEUAY 2..eiiieiiieiiiieiee e cectitee e e e s e et tre e e e e e s ettt e e e e e e e san bt e aaeeeeeeaannttaeaeaeeeaanbraaeeeeeeaaannrraaeeaeaann 57
23 3 Measuring performance in classifiCationc.ceicciiii i e 59
24 4 Topology estimation using empirical apPProachcoociiiiiiii e 59
o O A = T I ¥ o LY SRR 60
24.2 4.2 CASE SEUAY 2 .eeiieieeiiieeeteee ettt e et e e et e st e e et e e e bt e e e e bt e e e e bbae e e bteeeeanbreeeenabaeeeerreeeennrees 60
255 Competitive autoencoders With all Variables..........oooiiiieiei e 61
25.1 5.0 CaSE STUAY 1 ooreiiieiiiiiiiieee ettt e e e e et e e e e e e e e e ttb b e e e e e e eeettabaeeeeeeeesssbbaaeseesesassssaeseeesessssranaeeaenns 61

LASCA Project — Final Report ii

25.2 5.2 CaSE STUAY 2 ..ottt ettt sttt et st e st b et e s bt e s b et e be e e ne e e s b e e e be e e eneeesabe e s beeeaneeesareea 67

26 6 Competitive autoencoders without direct flOWS...........uviiiiiiii i 68
D ST R TR A O 1 I 8 e YA TSP UPR 69
26.2 6.2 CASE SEUAY 2..iiiiiiiieiiiieieee e ectte e e e e et e e e e e s e ettt e e e e e e saa b et e e e e eeeaa e nataaeeeeeeaanbraaaaeeeeaaaarraraeaeaann 69

27 7 Discussion @nd CONCIUSIONSeecuveeiiieiiiieeiiee sttt ettt ettt e s ree e st e st e sre e s neeesareesreeeneeesmeeesareeesneeesnneas 70

D3 211 o1 [ToT = =T o] 41 RO 70

On the equivalence of maximizing entropy and mutual information72

Report LASCA /R3 72

29 ADSTIACE 1.ttt ettt e b e bt b e e b e e b e e e he e sheeeheesabe st eenheenanesaeeenees 72
30 1 INTFOAUCTION .ttt ettt ettt e bt e s bt e s bt e s bt e e bt e saeesheeeaeesabe e bt sabeeabee sesaresanes 72
31 2 ShanNON @SHIMATOIS. c..eiiiiiietieree sttt ettt et e b e st e sae e she e saeesane st e sat e et e eaeeeneereens 73
32 3 Renyi’s INfOrmation @StIMAatorsccuiie i et et e et e e et e e e s abr e e e e abeeeesntseeesnnnnees 74

32.1 3.1 ReNYi'S EQUIVAIENCET ...oviii ettt ettt e et e e e tee e e e ate e e s e bae e e e snbaee e enaeeeennnees 74
33 4 Comparing Shannon and Renyi’s definitions of Mutual Information...........ccccvvveeiiioicciiieee e, 74
34 5 Comparing Shannon and Renyi’s estimators for ENTropYc.ovvveeeiriee i 75
35 6 Discussion and CONCIUSIONSeoueiiiiiiiiiierie ettt ettt e s bt e e bt e e sare e sareesabeeesneeesaneas 75
TS 271 o] [To Y= T o] o V75U URPRR 75

Training Neural Networks - Theory of Practical Issues 77

Report LASCA / R4 77

R Y o1 1 T PO TP OPPTOPRRPRP 77
38 1 INTrOAUCTION ettt ettt e e e sar e sr e e s re e e me e e sr e e s reees sesareeeas 77
39 2 Artificial NEUral NETWOIK ...ccc.eiiiiiiiiieiieecee ettt st st st st st st et e et e e e enteens 78
L0 U (o T=T g Tolo o 1= PSP PP PP PPPPPROP 79
41 4 Batch versus INCrEMENTAlcoouiiiiiiiiiieieeeee ettt ettt sttt st e st e st esbeessabeesabeesbeeennes 80
425 Gradient IMEThOoui it st et n e e 80
43 6 Supervised and UNSUupervised TraiNiNgeeeeeeeiiiiiiieeeeeeeeiiiirieeeeeeeeeriireeeeeeeessirsreeeeseessssrssseesessssssnes 81

LASCA Project — Final Report iii

44 7 Train, Test and Validation SEt........u i 81

o I 2= o A I =Y 1YY= U SURR 82
469 Data NOIrmMaliZation....c.c.eeeuiiiiie ettt st s e s e st e s bt e e st e e sar e e sabeeeaneeesareesans 82
47 10 Number of Hidden Neurons (NHN)oo ettt tee e et e e e tee e e earae e s e nree e e enraeas 83
48 11 Principal Component ANalYsis (PCA)couiii ettt tee e et e e e e ae e e e e earae e e e aree e eeareeas 84
49 12 Stability - Oja's Rule (Weights NOrmalization).........ccceeeecieiiieiiie ettt 85
50 13 ACtIVAtioN FUNCLION ..coueiiieiieiieceee ettt st st st st sttt eeeteens 87
51 14 Stable LEarniNg RaAtE ...ccccuiiiiiciiiee ettt ee ettt ettt e e st e e e st e e e e sttt e e e eataeeeenssaeeeansseeesssaesesssseesasseeenn 91
52 15 Adaptive LEArNING RAB.....ccccciiiiieiiiieiciiee ettt ettt e ettt e e et e e e ettt e e e ettt e e e esaaeeesnsseeeesasseeesnnseeeesnnsneens 91
53 16 Parzen Window Width - SilVerman RUIE........cocuiiiiriiiiieeeeeee et 92
54 17 Adaptive Sigma, @ (2Nd half Of AA) ..ecoeeeee e e s 93
5518 SAtUratioN ..ccocueiiiiiiiiiiiiiii i e e 93
LIRS B @ 1V e 1 1o V-SSP 93
oy A 1 I 0o ol [0 [T =3 2 (=T 0 =Y PRSP 94
SRS T o] [ToT={=T o] o1V Z5 PSP URPRRN 94

Theoretical Concepts of ITL Neural Networks97

Report LASCA / R5 97

o1 I R [4 o o [V 4 o o H SO O TS PPROPRRPRRPRR 97
60 2 ClassiC PROP thEOIY OVEIVIEW ...cccceeeiiiiieee ettt e ettt e e e e e e et te e e e e s e e saataa e e e e e s sensraeeeeeeesesnnntenneeeenan 98
61 3 ITL THEOIY OVEIVIEW.. .. eeeiiiiieeee e e ettt e e e e e ettt e e e e e e e e eaete e e e e e e e ssaaataeeeeaesessstasneseeesasssseeneeseseennnsssnns sennns 99
61.1 3.1 Entropy Maximization in the Hidden Layer (MaXE).......cccccuveeeiiieeeciiiee et 100
61.2 3.2 Mutual Information Methods...........cooiiiiiiiiiiee e e 101
62 4 Other TREOIY OVEIVIEWceiieeiiiieiciiieeeciitee e ettt e e ette e e e eata e e e setaeeeeetaeeesaataeeesassaeeeassaeesansseeesnsseesassenens 108
62.1 4.1 MinMax Normalization Method..........ccociiiiiiiriii e 108
62.2 4.2 Parzen WindOW WIdthcocooiiiiiiieeceeee et 110
62.3 4.3 Adaptive LearNing RAtEcccccciiiiiiiiiie ettt etee e e are e e e sae e e e eabae e e ertee e e nabeee e ennees 111

LASCA Project — Final Report iv

O S o o I (= - PSSP SSRURER 114

62.5 4.5 Neural Network SAtUrationcoceeeiiie et 114
63 5 ITL Methods PSEUAO-COUE ...uuiiiiiiiiiie ettt e sra e e st a e s s sbe e e s sasbeeesanseeeesnsreness 114
64 6 ITL methods code dOCUMENTALION......cccuiiiiiiiiiiie it s 124
(33211 o1 [ToT = =T o] 41 U 179

Theoretical Concepts of BackPropagation Neural Networks 181

Report LASCA /R6 181

66 1 INTrOAUCTION ..ooueiiiiiiiieceee ettt s et e s e sr e s re e e sabeesareeen eesnnees 181
67 2 ClassiC PROP thEOIY OVEIVIEWccecuiiiiiiiiiieeiiteeeeciteeesiie e e e stte e e e stte e e sataeeeeabeeeeenbteeesnnsaeesenseeesannens 181
68 3 Other THEOIY OVEIVIEWueeiiciiiie ettt e et e st e e et te e e s st e e s e et e e e e e bteeeesabeeeesnbaeeeesteeesnnnees 183
68.1 3.1 MinMax Normalization Method..........c.cooiiiiiiiiiiiiiiiieeee et 183
68.2 3.2 AdaptiVe LEArNING RAtE ..ccciiiiiiciiiieeee ettt ettt et e e e ee e rre e e e e e e estbbbeeeeeeeessasbaaeeeeeesenssreees 185
T T T I o o J O g} =T o - PP PPPPPPPRRN 188
68.4 3.4 Neural Network SAtUrationc.ooouieiii i 188
ST I O {0] S o 1Y =TU o [ol Yo =TSP 189
705 PROP cOde dOCUMENTAION.iiiiiiieiiieiiee ettt sttt st sttt e sbe e e ae e e sane e sabeesneeesareesareeeas 190
211 o] 1o Y= o] o V2SR URPRR 218

Comparative Analysis between ITL and BackPropagation autoassociative neural networks in power

system applications219

Report LASCA /R7 219

T2 1 INTPOTUCTION .ottt sttt sttt ettt e et et e s b e e sbeesbeesmeesmeesmeesmeesnnes eesneens 219
T3 2 DAta ceeeieiiiiii e e e e a e b et e et e e s ears et e e s eraeessan 219
74 3 Comparing BackPropagation in C++ With MATLABccciii ittt e 220
75 4 Exploring ITL networks With SCENAIiosc.uiiiiiiiiieiie ettt e s 222
765 Discussion and CONCIUSIONScc.ueevieiiieiiieiieiteesiee ettt ettt et sae e sme e s eneene e 224
A7 =11] 1To ==] 1 |2 PSSR 224

LASCA Project — Final Report \%

Analysis using descriptive statistics on the data used for the ITL networks and on the data used in the

Topology problem (Power system) 235

Report LASCA / R8 235

P43 o 1] 1 - T PSP PRR PRI 235
79 1 Non Parametric tests of 200dNESS OF fit.......cccciiiiiiiiie it 235

79.1 1.1 Formulation applied with the SMIrNOV test........ccccuviiiiiiii e 236

79.2 1.2 Formulation applied with the Cramer-von Mises testccceecveeiiiiiieeecciiee e 237
80 2 Statistical analysis of the Type 1 Data (case study “Normal”)cccoeeieciiiecciiee e 237
81 3 ITL networks: Data of type 1 & 3 (case Study “MUILI”)c.oeeeecieeeeeee e 251
82 4 Topology data (Case Study “DOWET SYSLEM”)......ccioecuuieieciiee ettt et e e e e 265
23 BT o o [o] [V 1] o - SRR 284
T Y1 o] [ToT={ =T o] o V2SR PURRRN 285

LASCA Project — Final Report vi

Table of Figures

Figure R1/ 1 - Scheme of Hybrid Approach. 17
Figure R1/ 2 - Default Result Output. 18
Figure R1/ 3 - Visualization of Alpine function for R?, from (Clerc, 1998). 19

Figure R1/ 4 - Results for Alpine function with Hybrid [dim 120 — 50 — 120] and EPSO [dim 120]. Average of
10 runs. 20

Figure R1/ 5 - Results for Alpine function with Hybrid [dim 120 — 50 — 120] and EPSO [dim 120]. Average of
10 runs. 20

Figure R1/ 6 - Results for Alpine function with Hybrid [dim 200-70-200] and EPSO [dim 200]. Average of 10

runs, scalel.21

Figure R1/ 7 - Results for Alpine function with Hybrid [dim 200-70-200] and EPSO [dim 200]. Average of 10

runs, scale 2. 21

Figure R1/ 8 - Results for Alpine function with Hybrid [dim 200-100-200] and EPSO [dim 200]. Average of 10

runs, scale 1. 22

Figure R1/ 9 - Results for Alpine function with Hybrid [dim 200-100-200] and EPSO [dim 200]. Average of 10

runs, scale2. 22

Figure R1/ 10 - Results for Alpine function with Hybrid [dim 300-100-300] and EPSO [dim 300]. Average of

10 runs, scale 1. 23

Figure R1/ 11 - Results for Alpine function with Hybrid [dim 300-100-300] and EPSO [dim 300]. Average of

10 runs, scale 2. 23

Figure R1/ 12 - Results for Alpine function with Hybrid [dim 300-150-300] and EPSO [dim 300]. Average of
10 runs, scale 1. 24

Figure R1/ 13 - Results for Alpine function with Hybrid [dim 300-150-300] and EPSO [dim 300]. Average of
10 runs, scale 2. 24

Figure R1/ 14 - Visualization of Rosenbrock function in R?, from (Wikipedia, 2012b). 25

Figure R1/ 15 - Visualization of Rosenbrock function in R?, from (Richling, 2009). 25

LASCA Project — Final Report i

Figure R1/ 16 - Results for Rosenbrock function with Hybrid [dim 120 — 50 — 120] and EPSO [dim 120].

Average of 10 runs. 26

Figure R1/ 17 - Results for Rosenbrock function with Hybrid [dim 200 — 70 — 200], Hybrid [dim 200 — 100-
200] and EPSO [dim 200]. Average of 10 runs. 26

Figure R1/ 18 - Results for Rosenbrock function with Hybrid [dim 300-100-300], Hybrid [dim 300-150-300]
and EPSO [dim 300]. Average of 10 runs. 27

Figure R1/ 19 - Visualization of the Griewank function in R?, from (Hedar, 2012a). 28

Figure R1/ 20 - Results for Griewank function with Hybrid [dim 120 — 50 — 120] and EPSO [dim 120].

Average of 10 runs. 28

Figure R1/ 21 - Results for Griewank function with Hybrid [dim 200 — 70 — 200], Hybrid [dim 200-100-200]
and EPSO [dim 200]. Average of 10 runs. 29

Figure R1/ 22 - Results for Griewank function with Hybrid [dim 300 — 100 — 300], Hybrid [dim 300-150 —
300] and EPSO [dim 300]. Average of 10 runs. 30

Figure R1/ 23 - Visualization of the Sphere function in R?from (MathWorks, 2012). 30
Figure R1/ 24 - Visualization of the Sphere function in R2 from (Hedar, 2012c). 30

Figure R1/ 25 - Results for Sphere function with hybrid [dim 120 — 50 — 120] and EPSO [dim 120]. Average of
10 runs. 31

Figure R1/ 26 - Results for Sphere function with hybrid [dim 200 — 70 - 200], hybrid [dim 200-100-200] and
EPSO [dim 200]. Average of 10 runs. 32

Figure R1/ 27 - Results for Sohere function with Hybrid [dim 300-100-300], Hybrid [dim 300-150-300] and
EPSO [dim 300]. Average of 10 runs. 32

Figure R1/ 28 - Visualization of Shift Rastrigin function in R?, from (Wikipedia, 2012a). 33

Figure R1/ 29 - Results for Shift Rastrigin function with Hybrid [dim 120 — 50 — 120] and EPSO [dim 120].

Average of 10 runs. 34

Figure R1/ 30 - Results for Shift Rastrigin function with hybrid [dim 200 — 70 - 200], hybrid [dim 200-100-
200] and EPSO [dim 200]. Average of 10 runs. 34

Figure R1/ 31 - Results for Shift Rastrigin function with Hybrid [dim 300-100-300], Hybrid [dim 300-150-300]
and EPSO [dim 300]. Average of 10 runs. 35

LASCA Project — Final Report ii

Figure R1/ 32 - Visualization of Shift Schwefel function in R?, from (Pan et al., 2010). 36
Figure R1/ 33 - Visualization of Schwefel function in R?, from (Hedar, 2012b). 36

Figure R1/ 34 - Results for Shift Schwefel function with Hybrid [dim 120 — 50 — 120] and EPSO [dim 120].

Average of 10 runs. 37

Figure R1/ 35 - Results for Shift Schwefel function with Hybrid [dim 200 — 70/100 — 200] and EPSO [dim
200]. Average of 10 runs. 37

Figure R1/ 36 - Results for Shift Schwefel function with Hybrid [dim 300 — 100/150 — 300] and EPSO [dim
300]. Average of 10 runs. 38

Figure R1/ 37 - Visualization of the Sphere function in R?, from (Pan et al., 2010). 39
Figure R1/ 38 - Results for Shift Sphere function [dim 120 — 50 — 120]. Average of 10 runs. 39

Figure R1/ 39 - Results for Shift Sphere function with Hybrid [dim 200-70-200], Hybrid [dim 200-100-200]
and EPSO [dim 200]. Average of 10 runs.40

Figure R1/ 40 - Results for Shift Sphere function with Hybrid [dim 300-100-300], Hybrid [dim 300-150-300]
and EPSO [dim 300]. Average of 10 runs.41

Figure R1/ 41 - Simplified scheme of wind - hydro farms with 8 reservoirs.47

Figure R1/ 42 - Results for 8Reservoirs problem with Hybrid [dim 96 — 50 — 96] and EPSO [dim 96]. Average
of 10 runs. 48

Figure R1/ 43 - Simplified scheme of wind - hydro farms with 12 reservoirs. 48

Figure R1/ 44 - Results for 12Reservoirs problem with Hybrid [dim 146 — 50 — 146] and EPSO [dim 146].

Average of 10 runs. 49
Figure R1/ 45 - Summary of main specifications for the experiments presented. 50

Figure R2/ 1 - Case study 1 power system scheme, IEEE RTS 24, with identification of Breakers 1 to10, from
(Krstulovic et al., 2013). 54

Figure R2/ 2 - Case study 2 power system scheme, IEEE RTS 24, with identification of Breaker 11.58

Figure R3/ 1 — Schematic representation of the first half of an autoencoder to be trained with ITL criteria.

72

Figure R4/ 1- Nonlinear Model of a Neuron, from (Haykin S. , Neural Networks - A Comprehensive

Foundation, 1999). 78

LASCA Project — Final Report iii

Figure R4/ 2 - Schematic representation of an autoencoder of three layers. 79

Figure R4/ 3 - NN Error versus NHN, from (El-Sharkawi, 1995). 84

Figure R4/ 4 - Linear Transfer Function, from (Demuth & Beale, 2002). 87

Figure R4/ 5 - Symmetric Saturating Linear Transfer Function, from (Demuth & Beale, 2002). 87
Figure R4/ 6 - Logistic Sigmoid Transfer Function, from (Demuth & Beale, 2002). 88
Figure R4/ 7 - Hyperbolic Tangent Function, from (Demuth & Beale, 2002). 89

Figure R4/ 8 - Overfitting, from (El-Sharkawi, 1995). 94

Figure R5/ 1 - Schematic of an autoencoder trained with backpropagation. 98

Figure R5/ 2 - Schematic of an autoencoder trained within two separated parts. 99
Figure R5/ 3 - lllustration of the considered pairs of neurons within hidden layer. 107
Figure R5/ 4 - Schematic of data transformation incurred with min max normalization. 109
Figure R5/ 5 - Saturation regions of a Sigmoidal Function (from (El-Sharkawi, 1995)).114
eq.R6/(2) 181

eq.R6/(3) 181

Figure R6/ 1 - Schematic of an autoencoder trained with backpropagation. 182

Figure R6/ 2 - Schematic of data transformation incurred with min max normalization. 184
Figure R6/ 3 - Saturation regions of a Sigmoidal Function (from (El-Sharkawi, 1995)).189
Figure R7/ 1 - Experimental Derived Scenarios from Base Scenario. 4

Figure R8/ 1 - IEEE RTS 24 (IEEE RTS Task Force of APM Subcommittee, 1979) with identification of breakers’

position. 47

LASCA Project — Final Report iv

LASCA - Large Scale Computing with Autoencoders -
Application to Power Systems

PTDC/EEA-EEL/104278/2008

Project LASCA / Final Report

1 EXECUTIVE SUMMARY

The project LASCA aimed at testing a novel strategy to address large scale optimization problems, when using
metaheuristics as a solver. It is known that the meta-heuristics behaviour (such as in evolutionary algorithms)
degrades quite considerably with the dimensional growth of the search space. The conjecture behind the
LASCA approach, therefore, was that a reduction in the search space dimension, even at the cost of some loss
in precision, would lead, at least in some classes of problems, to a speed up in convergence of some meta-
heuristic and, in a favourable scenario, to a convergence with higher precision (for instance, from escaping to
getting trapped in local optima).

The strategy put to test was the following:

1. Given a problem, run a meta-heuristic optimization algorithm for some generations, and collect data about
the progress of the search.

2. Use these data to train an autoencoder

3. Use the autoencoder to obtain a projection of the search into a smaller dimension space

4. Organize the progress of the search for the optimum in the new space

5. At some point, return to the higher dimension space and tune up the solution.

The project success involved a certain level of risk: the strategy might prove not valid, or not workable, or not
good enough and not compensating for the effort put in its implementation. The development of the project
proved this assessment of the risk involved to be correct. But, finally, success was achieved and the project
could be completed with extremely positive results.

As an extremely valuable complementary result (nevertheless crucial to the success of the project), one could
derive new principles and a new procedure to train autoassociateive neural networks in a much more efficient
way than reported in the state-of-the-art literature — based on principles related to Information Theoretic
Learning and resorting to unsupervised training of the first half of the neural network instead of the classical
supervised training of the whole network. This achievement was not predicted in the project proposal.

In summary, the project demonstrated that the new solving strategy devised may produce very good results.
Therefore, it has the potential to become one important weapon in the toolkit of the large scale programming
solver. Furthermore, a new and more efficient process of training autoencoders was created.

The search for and validation of these scientific and very valuable results allowed the production of
contributions for internations journal papers that exceed what was predicted in the project proposal (5 against
4). Papers in conferences were naturally produced. The work contributed strongly to the contents of one PhD
thesis and moderately to a second PhD thesis.

LASCA Project — Final Report 1

2 INTRODUCTION

The project LASCA aimed at solving large scale problems in power systems with the application of
autoassociative neural networks (autoencoders). This Final Report provides the overview on the research
activities developed during the fulfilment of LASCA project. Therefore, this report provides the holistic view
on the activities performed, and the correspondent alignment with the syllabus firstly proposed within the

proposal.

Autoencoders are effective in providing a useful tool to compress and expand information in various
domains. One of the original ideas explored in this project relates with the employment of an evolutionary
optimization metaheuristic into a reduced space S’ (obtained with autoencoders' ability to reduce
dimensionality), whose evolution is controlled in the original space S. This way, the autoencoders map the
transition between the two spaces S and S’. The research conducted led to the proposal of a new
technique, named “LASCA”. This technique was applied to benchmark optimization functions, and to the
Hydro-Wind coordination problems. The results obtained revealed a potential for the achievement of
better solutions than simply applying a meta-heuristic (the Evolutionary Particle Swarm Optimization EPSO

was chosen for testing) in the original search space.

The progress of the project soon demonstrated that the quality of the training of the autoencoders has a
strong effect in the quality of the results achieved. Therefore, all efforts were primarily put in this
intermediary research topic, which assumed a degree of importance not foreseen in the beginning —

although there was a provision for this in the original project proposal.

This strategy for conducting the project was discussed and validated with the external expert invited to

accompaign the project: Prof. Mohamed El-Sharkawi, from the University of Washington (USA).

This important research topic pursued in project LASCA concerned the development of a new training
procedure for autoassociative neural networks using Information Theoretic Learning (ITL) concepts, its
validation in test problems and its application to power system problems. Four main types of ITL
autoencoders where developed: i) maximizing the Renyi’s Quadratic Entropy at bottleneck layer, ii)
maximizing the Quadratic Mutual Information (QMI) between the first and bottleneck layers with Cauchy
Schwartz Estimation, iii) maximizing QMI between the first and bottleneck layers with Euclidean Distance
Estimation, iv) minimizing QMI between all combinations of different neurons at bottleneck layer. Using
adequate datasets for train, test and validation, alongside with the employment of adequate statistical
tests, it was found that the quality of solutions provided by ITL methods was better than the classic

Backpropagation (PROP) method, although ITL methods demand higher processing time. Among the ITL

LASCA Project — Final Report 2

methods, a similar level of solution quality was obtained, and the minimization of QMI between input and
bottleneck layers with Cauchy Schwartz Estimation revealed the best processing time, justifying its

selection for further applications in power system problems.

The working papers produced are provided in the next chapters of this report. The scientific contributions
attained within this project are contained in the literature published, namely papers and theses submitted
to the University of Porto and the Federal University of Maranhdo, Brazil. The most relevant literature is
provided in the annexes of this document. The project main objectives and results are detailed in the

following sections, demonstrating that the Research Plan originally submitted was adequately followed.

3 PROJECT PLANNING AND ITS COMPLETION

This section summarizes the main tasks initially planned for the development of project LASCA as well as

how they were developed. All tasks were duly completed.

3.1 State of the art in autoencoders

This task was devoted to a thorough examination of research published in the domain of autoencoders in
order to extract useful information and lessons for the project. It was also devoted to the study of both

autoencoders and the evolutionary algorithms, especially EPSO, by the new researchers.

The need for this task was identified by realizing that autoassociative neural networks is still a somewhat
exotic field and that the new researchers recruited to the project team would likely not be familiar with
either this topic or with the Evolutionary Particle Swarm Optimization algorithm (EPSO). Obviously, no

scientific result was expected from this task.

3.2 Training autoencoders

This task was to be devoted to developing and implementing efficient processes to train and tune
autoencoders. It demands experimenting a set of alternatives from backpropagation to evolutionary
algorithms, from batch training to incremental layer training, from adopting the classical MSE (minimum

square error) to MEE (minimum error entropy) criteria.

In fact, this task became, in terms of effort, the main task of the project, due to the difficulties it became
necessary to overcome. Its completion produced an extremely valuable result in terms of a new procedure
to accurately train autoencoders, based on splitting the neural network along its middle layer (of reduced

dimension) and applying an unsupervised training procedure the first half (from input to middle layer). This

LASCA Project — Final Report 3

unsupervised traing must be conducted under some criterion based on Information Theoretic Learning

concepts, such as maximizing the mutual information between the input and output vectors.

3.3 Software platform development

This task was devoted to building a software platform to integrate EPSO with autoencoders for
optimization. This included a suitable and efficient autoencoder training procedure inside the optimization
process. The software platform was customized to enable the running of Power System problems and its

performance optimized taking this type of application in account.

This task progressed naturally in parallel with the scientific tasks, as the test and validation cases were built

up.
3.4 Hybrids autoencoder — EPSO

This task was devoted to studying the best way to embed autoencoders in the EPSO evolutionary algorithm
to maximize the optimization efficiency. A practical solution was achieved but it must be recognized that
this objective showed dependence on the type of problems being addressed. No scientific results were

expected from this task, only an improvement in the software platform.

3.5 Tests in real world large scale Power System

This task included 1.The selection of specific problems in the Power Systems area presenting aspects that
could benefit from a hybrid evolutionary/autoencoder solving strategy. 2. The adaptation of the softwares
and the development of specific software to solve the Power System problems selected. 3. The analysis of

the results.

The task was actually enlarged by adding to it a preliminary phase: the selection of a set of standard
mathematical test functions to verify the performance of the LASCA strategy, before passing to power

system problems.

The power system problems selected to test the efficiency and validity of the new techniques were the

following:

1. Estimation of breaker status under wrong or missing information in meshed networks

2. Wind-hydro coordination in systems with cascading reservoirs

The first problem was especially selected to verify, in a difficult real world problem, the validity of the new

autoassociative neural network training procedures.

LASCA Project — Final Report 4

The second problem was designed in two versions (smaller and larger) to test the efficiency of the LASCA

strategy.

The choice of these problems was made after discussion with the project advisor (Prof. EI-Sharkawi).

3.6 Dissemination

This task was included in the project mainly to take in account the effort of
1. Writing conference and journal papers and submiting them for publication.
2. Preparing a website with a public information about the project and its advancement.
3. Participating in scientific events to present the work.
The objectives foreseen were duly completed. The website related to the project is referenced by

http://lasca.inescporto.pt.

3.7 Final Report

This task was devoted to the writing of the final project report and is accomplished.

4 ADVICE FROM THE EXTERNAL PROJECT CONSULTANT

As foreseen in the project proposal, Prof. Mohamed El-Sharkawi, from the USA, was invited as Project

Consultant.

Prof. El-Sharkawi is a renowned personality and gave a valuable contribution to the project. He is an IEEE
Fellow and Director of the CIA-LAB (Computational Intelligence Applications Laboratory) in the Department
of Electrical Engineering of the University of Washington. He is a member of the administrative committee
of the IEEE Neural Networks Council representing the Power Engineering Society and Video Tutorial Chair

of the IEEE Continuing Education Committee.

Prof. El-Sharkawi visited INESC TEC twice during the duration of the project (in 2012 and in 2013), each time
for a week, besides cooperating regularly in the discussion of the project progress via the normal electronic

communication means. He produced two reports that are added to this Final Report as Annexes.

In summary, he not only gave valuable advice but agreed with the project development strategy put in

place.

LASCA Project — Final Report 5

5 RELATION WITH OTHER PROJECTS SUPPORTED BY FCT

This project LASCA has strong connections with two projects funded by FCT:

POSC/EEA-ESE/60980/2004

EPSO - Evolutionary Particle Swarm Optimization, a new meta-heuristic with applications in power systems.
This project ended in 2008 with a strong success: it allowed the validation of a new meta-heuristic
denoted EPSO, which proved more efficient in benchmarking tests that the classical PSO (Particle

Swarm Optimization).

This EPSO algorithm, running in the platform developed in this project, was an essential tool in the
LASCA strategy.

PTDC/EEA-EEL/105261/2008

GEMS - Gross errors and missing signals: new concepts in power system state estimation
This project ended in 2012 also with success. It was mainly devoted to new models in power system
state estimation. It benefited, at some point, from the results achieved in the LASCA project from
the new processes to train autoencoders and provided one of the two real world applications

selected to test and validate the components of the LASCA strategy.

LASCA Project — Final Report 6

6 CONCLUSIONS

The promised results of the project were:

1. A methodology to include autoencoders in evolutionary optimization processes
2. A software platform

3. New and more efficient models to solve selectd Power System problems

4. Papers submitted and published in international conferences and journals
5

Contributions to PhD and MSc. theses

This report confirms that all objectives were met and the results even exceeded expectations in some

points.
In summary:

0 The project met all goals with success.

0 Valuable scientific results were generated.

O Publications were produced as predicted, namely in the most prestigious international journals in
the Electric and Electronic Engineering field: the IEEE Transactions.

O The results were integrated in two PhD Theses.

The effort to publish results from the project continued even after its ending date, because there is still
material of very interesting quality to be submitted to the scientific community. Some papers are
undergoing a process of submission to journals and yet some more are foreseen, at least to important

conferences.

The Pl is grateful to the FCT for the funding provided, which was essencial to guarantee the conditions to

proceed with the research reported.
Porto, October 31, 2013

Vladimiro Miranda, IEEE Fellow
Full Professor, Faculty of Engineering of the University of Porto, Portugal
Researcher at INESC TEC — INESC Technology and Science, Portugal

LASCA Project — Final Report 7

Publications

The following publications were produced incorporating results from the project work.
Papers in journals

[1] Jakov Krstulovic, Vladimiro Miranda, Anténio Sim&es Costa, Jorge Correia Pereira, Towards an
auto-associative topology state estimator, /EEE Transactions on Power Systems, vol.28, no.3,
pp.3311-3318, Agosto, 2013.

[2] Vladimiro Miranda, Adriana Castro, Diagnosing faults in power transformers with autoassociative
neural networks and mean shift., IEEE Transactions on Power Delivery, vol.27, no.3, pp.1350-1357,
Julho, 2012.

[3] Vladimiro Miranda, Jakov Krstulovic, Hrvoje Keko, Cristiano Moreira, Jorge Pereira, Reconstructing
missing data in State Estimation with autoencoders, /EEE Transactions on Power Systems, vol.27,

no.2, pp.604-611, Maio, 2012.

Beside these already published papers, other papers are being prepared/submitted for publication in an

international journal:

[4] Vladimiro Miranda, Vera Palma Ferreira and Joana Hora Martins, “Optimizing large scale problems
in a reduced space mapped by autoencoders”
[5] Catia S. P. Silva, Jakov Krstulovic, Joana H. Martins, Vera Palma, Vladimiro Miranda and José C.

Principe, “Extracting topology information from electric measurements: a model comparison”

Papers in international conferences

[1] Jean Sumaili, Vladimiro Miranda, Liviane Rego, Adamo Santana, Renato Francés, A densification
trick using mean shift to allow demand forecasting in special days with scarce data, Proceedings
of ISAP 2013 - ISAP 2013 - International Conference on Intelligent Systems Applications in Power
Systems, Tokyo, Japan, Julho, 2013.

[2] Vladimiro Miranda, Jakov Krstulovic, Joana Hora, Vera Palma Ferreira, José Carlos Principe, Breaker

status uncovered by autoencoders under unsupervised maximum mutual information training,

LASCA Project — Final Report 8

Proceedings of ISAP 2013 - ISAP 2013 - International Conference on Intelligent Systems Applications
in Power Systems, Tokyo, Japan, Julho, 2013.

[3] Jakov Krstulovic, Vladimiro Miranda, Hrvoje Keko, Jorge Correia Pereira, Descoberta da topologia
do sistema na auséncia de sinais com redes neurais autoassociativas, Proceedings of SBSE 2012 -
IV Simpdsio Brasileiro de Sistemas Elétricos, Goias, Brasil, Maio, 2012

[4] Vladimiro Miranda, Shigeaki Leite Lima, Adriana G. Castro, Osvaldo Saavedra, Redes Neurais
Autoassociativas Aplicadas ao Diagnostico de Falhas em Transformadores de Poténcia,
Proceedings of SEPOPE 2012 - XII SIMPOSIO DE ESPECIALISTAS EM PLANEJAMENTO DA OPERACAO E
EXPANSAO ELETRICA, Rio de Janeiro, Brasil, Maio, 2012.

[5] Adriana Garcez Castro, Vladimiro Miranda, Shigeaki Leite Lima, Transformer fault diagnosis based
on autoassociative neural networks , ISAP 2011 - 16th International Conference on Intelligent

System Applications to Power Systems, Hersonissos, Grécia, Setembro, 2011.

LASCA Project — Final Report 9

The following PhD theses incorporated results from the project work:

Shigeaki Leite de Lima

Incipient failure diagnosis and decision making in power transformers (in Portuguese — Diagndstico de

falhas incipientes e tomada de decisGo em transformadores de poténcia)

Thesis submitted and approved within the Post-graduation Program in Electrical Engineering at the Federal

University of Maranhdo, Sdo Luis (MA), Brazil, September 2013.

The Pl was officially co-supervisor of the thesis.

Jakov Krstulovic Opara
A new paradign for power system state estimation (provisional title)

Thesis to be submitted, likely until the 31*" of December, 2013, to FEUP (the Faculty of Enginnering of the

University of Porto), within the Doctoral Program in Electrical and Computer Engineering.

The Pl is officially the supervisor.

Both thesis incorporated, in different manner, the new training procedure developed for autoassociative

neural networks.

LASCA Project — Final Report 10

LASCA Project — Final Report 11

UNIVERSITY OF WASHINGTON

DEPARTMENT OF ELECTRICAL ENGINEERING, Box 352500
SEATTLE, WASHINGTON 98195-2500

Telephone: (206) 685-2286
Mohamed A. EI-Sharkawi, Professor Electronic Mail: elsharkawi@ee.washington.edu
Smart Energy Laboratory (SEL) Home Page: http://www.SmartEnergyLab.com
Computational Intelligence Applications (CIA) Laboratory Home Page: http://www.cialab.org

September 14, 2012

Progress review report on INESC project on “Large Scale Computing with Autoencoders - Application to
Power System”

One of the most disabling problems in ultra-large-scale (ULS) systems is the enormous number of
variables that needs to be processed. In the area of adaptive optimization, such large number of
variables cannot be used and sub-optimal solutions are often reached by gross approximation in the
system size or the number of variables to be considered. In a number of cases, the sub-optimal solution
is far from the optimal and takes long time to compute. Therefore it cannot be adaptive for on-line
applications.

The scope of this project is to explore the potential of using auto-encoder in feature extractions that
allows the use of small set of features to perform adaptive optimization, and then scale the solution to
the original ULS system. This high risk basic research can have a tremendous impact if the conjecture of
the investigator is confirmed.

The research team at INESC has already developed several encoders using different techniques. One of
them is quite novel as the encoder is split into two networks that are trained differently; one is
unsupervised and the other is supervised. The results are promising and this work by itself is an
achievement. The researchers are currently exploring different topologies and are testing the encoder
for memorization and saturation. In addition, information on the performance index will be included to
identify any enhancement in the encoder performance.

The principal investigator, Dr. Vladimiro Miranda, is one of the leading world experts in neural networks
and data compression. He has three energetic researchers forming the team on this project. Although
this research is high risk with no guarantee for success, | expect them to deliver several novel
technologies that can be beneficial for future work.

The research strategy of the team is very good and | agree with it. It is beneficial to concentrate on the
encoder first before the application to hydro-wind coordination is tackled.

Mohamed A. El-Sharkawi
Professor

UNIVERSITY OF WASHINGTON

DEPARTMENT OF ELECTRICAL ENGINEERING, Box 352500
SEATTLE, WASHINGTON 98195-2500

Telephone: (206) 685-2286
Mohamed A. EI-Sharkawi, Professor Electronic Mail: elsharkawi@ee.washington.edu
Smart Energy Laboratory (SEL) Home Page: http://www.SmartEnergyLab.com
Computational Intelligence Applications (CIA) Laboratory Home Page: http://www.cialab.org

June 12, 2013

Progress review report on INESC project on “Large Scale Computing with Autoencoders - Application to
Power System”

This is my second visit to evaluate INESC progress on this project. In my first visit, | found that the
research team had developed several encoders with some successful results. The recommendation at
that time was to explore different topologies, enhance encoder performance, and test the encoder in
wind-hydro coordination problem.

In this second visit, | am delighted that the research team was quite successful in designing effective
encoders. Several designs, structures and training techniques were employed with promising results. In
addition, the research team explored the use of the encoders in several important applications, two of
them are listed below.

Hydro-wind coordination

This is one of the challenging problems associated with the stochastic production of wind energy
systems. Because wind is varying, there are times when the grid is having surplus or deficit in energy. In
these situations, hydro system can be used to store energy through pump storage or increase their
energy production. This is a nonlinear optimization problem with several constraints. Solving this
problem using the original data space is very hard as the scale and complexity of the problem are
prohibitive. However, the team showed that the encoder developed for this problem can be used to
provide an optimum solution to the hydro-wind coordination problem. The performance function they
used is based on cost of energy from various resources, constraints imposed on the operation of the
system, several penalty factors, and wind forecasting.

The successful results in this problem is highly encouraging and, in the future, the team can even extend
the optimization procedure to include environmental factors such as irrigation constraints and fish
sensitivity to nitrogen. When successful, the team at INESC would have solved on of the major problems
facing utilities with hydro based systems and large scale wind turbines.

Estimation of Breaker Status

Another nice application for the autoencoder is to estimate the status of the circuit breakers in large
scale system. INESC team has developed an auto association encoder for both closed and open status of
breakers based on regional monitoring. The results shows that the accuracy is very high even when the
currents are not monitored; the maximum failure rate is less than 2%.

For future addition, the research team may want to compare their technique to other methods and
recommend the suitable solution based on the size and complexity of the power system. In addition,
they may want to consider applying their technique to the distribution network, which is in great need
for effective situation awareness methods.

In conclusion, based on what | have seen, | believe that the research team under the leadership of Dr.
Vladimiro Miranda has achieved very promising results. Moreover, they have done more work than
what is expected in this project. | would highly encourage the team to publish their research work and
keep extending their work after this project is finished.

Sincerely,

Mohamed A. El-Sharkawi
Professor

Application of autoassociative neural networks to solve
large scale problems in power systems

PTDC/EEA-EEL/104278/2008

Report LASCA / R1

7 Abstract

This paper synthetizes the work conducted under the scope of project LASCA concerning the application of
autoassociative neural networks (autoencoders) to solve large scale problems in power systems.
Autoencoders have been shown effective in providing a useful tool to compress and expand information in
various domains. This work explores the autoencoders' ability to reduce dimensionality by applying an
evolutionary optimization metaheuristic into a space of reduced dimension. This idea was firstly pursued
with the goal of reducing computational effort, which is known to be significantly high for large scale
problems. The methodology “Hybrid”, firstly proposed in (Costa, 2008), was implemented. This
methodology allows an evolutionary metaheuristic to evolve in a reduced dimension space S’, controlling
its evolution in the original space S. The results obtained showed that this approach does not allow the
achievement of a computational effort reduction and that it has the potential to achieve better solutions in

some case studies.

8 1 Introduction

The optimization of large scale problems with evolutionary algorithms is an adequate process to represent
realistic features of real world problems. However, solving problems in high dimensional spaces is both
demanding in computing resources and difficult on convergence into satisfactory solutions. These
drawbacks usually lead to early termination of runs, inducing the metaheuristics' performance to be below

than desirable.

The problem of dimensionality reduction has been addressed with applications in clustering and in image
processing. One important technique is Principal Component Analysis (PCA) (Jolliffe, 2002), which is a

mathematical procedure that projects the data into a linear subspace: data is multiplied with the

LASCA Project — Final Report 15

eigenvectors from the sample covariance matrix, from where each point is represented by its coordinates

along the directions of greatest variance in the data set.

One research topic that has not been widely explored in literature, and that is explored in this work, is the
combination of dimensionality reduction techniques as a general optimization tool for large scale problems.
Noting that, to address such topic, it is necessary to transfer into a reduced space not only the data but also
the constraints and the objective function of the problem. This transference can easily become extremely
complex. The idea persecuted in this work concerns making an evolutionary metaheuristic to evolve in a
reduced dimension space §’, controlling its evolution in the original space S. The transition between S and §’
is made with recourse to an autoencoder, applied as a reversible mapping between the two spaces
(autoencoders give mappings in both directions between S and §’). This way, the evolutionary

metaheuristic can evolve in §’, with the assessment of its objective function made in S.

This paper includes the description of the methodology implemented to address optimization in large scale
problems, firstly presented in (Costa, 2008) and here designated as “Hybrid”. The Hybrid methodology was
tested for 9 case studies: seven mathematic optimization functions and two power system problems

concerning the coordination of energy production in hydro and wind farms.

The results obtained showed that the Hybrid approach lead to the achievement of better quality solutions
for some of the addressed case studies, and these are Sphere functions and the Wind-Hydro coordination
problem. The tests conducted with other functions, e.g. Rosenbrock or Rastrigin, did not return a significant
gain nor in computational effort or in the quality of the solution achieved. The results and discussion for

each case are detailed.

The paper is structured as follows. Section 2 explains the Hybrid procedure implemented. Section 3
provides information on the notation used and on the specifications assumed for all experiments. Sections
4 to 12 present the results and discussion concerning the experiments conducted for the case studies
Alpine, Rosenbrock, Griewank, Sphere, Shift Rastrigin, Shift Schwefel, Shift Sphere and Hydro-Wind

problem, respectively. The final conclusions are considered in Section 12.

9 2 Hybrid Approach

The Hybrid methodology is next described. Let us consider three major parts: A, B and C.

LASCA Project — Final Report 16

Figure R1/ 1 - Scheme of Hybrid Approach.

Part A

The metaheuristic EPSO is applied within the original space S of the problem. This implementation is made
for a specified number of iterations, this number is chosen depending on the problem addressed. The
algorithm is allowed to evolve normally and during this period a set of particles is stored, as well as their
weights concerning inertia, cooperation, perturbation and memory. The particles stored are to be distinct.
The number of particles to store is specified. When the number of particles to store exceeds the maximum

number specified, the best ones are kept, and the worst are discarded.

Part B

The set of particles stored is divided in order to construct three datasets: train dataset, test dataset and
validation dataset. The construction of these three datasets is made with an alternate and proportional

selection of examples from the set of particles.

These datasets are used to train an autoencoder, using a suitable training procedure. Once the
autoencoder is trained, the 1% half is used to compress the particles from the original space S to the
reduced space S’. The weights of inertia, cooperation, perturbation and memory are kept. The velocity of
the particles can be transferred or can be initialized randomly in S’. At this point, the evolutionary
metaheuristic EPSO is set to run within space S’. The value of the fitness at each moment is calculated using

the 2" half of the autoencoder to expand and calculate the respective fitness.

LASCA Project — Final Report 17

Part C

After running a specified number of iterations in S’, the swarm is transferred to the original space again,
where it can evolve for some more iterations, in order to improve the solution achieved. Next chapters
present the results for the two approaches, EPSO and Hybrid, using a tripartite graph, corresponding to the
three parts A, B and C. Next graph illustrates an example, where the horizontal axis relates to the number
of iterations produced in EPSO and the vertical axis concernes the fitness function value. For Hybrid
approach, at the transition from part A to part B the neural network is trained but graph only shows the

EPSO iterations.

9000

2800 EPSO
8600 = = = HyBrid
8400 - FAc
8200 .

8000 - !

Function

7800 - ¢ 1

Figure R1/ 2 - Default Result Output.

10 3 General specifications

The original space is denoted with the symbol S and the reduced space with S’. The reference to the
dimensions of the spaces used in each experiment is made using squared brackets. For EPSO experiments
the dimension of S is mentioned (e.g. EPSO [dim 120]). For Hybrid experiments the three dimensions
pursued are included by order: dimension of S, dimension of S” and dimension of S (e.g. Hybrid [dim 120-

50-120]).

Autoencoder specifications

For all experiments, autoencoders were trained with a dataset of 1000 examples, a test dataset of 500
examples and a validation dataset of 500 examples. The synaptic weights for the 1*" half of the autoencoder

were initialized using Principal Components Analysis (PCA), and the synaptic weights for the 2" half were

LASCA Project — Final Report 18

initialized with the transposed matrix of the synaptic weights found for the 1** half. The initialization for all
synaptic bias was set with zeros. The training includes an adaptive learning rate, as specified in (Hagan,
Demuth, & Beale, 1996, pp. 12-12). Also a non-saturation procedure was implemented, allowing the

autoencoder to avoid the saturation of the synaptic weights during the training.

Runs

Each experiment refers to the average of 10 runs, each run concerns a distinct initialization of random
numbers. Although the initialization of synaptic weights used in all autoencoders is not dependent on
randomness, the initialization of swarms and its components is dependent on randomness, alongside with

the corresponding evolution in S and §”.

Results presentation

The results concerning the benchmark optimization functions are presented with several experiments,
referring to different dimensions of § and §’. The results concerning the Hydro-Wind problem are presented

with a single experiment each, as the changing of dimensions in these cases represents a different problem.

11 4 Alpine Function
The Alpine function is defined as follows:
D

fon) = [Jsinco ([T x
| i

i=

Eq. R1/(1)

In R? and considering a domain [0,10]?, the visualization is provided in the next figure.

Figure R1/ 3 - Visualization of Alpine function for RZ, from (Clerc, 1998).

Experiment 1 [dim 120 - 50 - 120]

This experiment considers S to have a dimension of 120, and §’ of 50, for a domain [0, 10]'2°. The
autoencoder was trained with backpropagation (PROP) (Rumelhart, Hinton, & Williams, 1986) during 2000

epochs. The 2" layer included hyperbolic tangent activation functions; the 3" layer included piecewise-

LASCA Project — Final Report 19

linear activation functions. Data were normalized with MinMax Global (Palma & Hora, 2012). Learning rate
was initialized with the value 0.5. The parameters found to best perform with EPSO in § are g = 0.4 and
cps = 0.1. Concerning the EPSO running in S’ the best parameters found were: 75, = 0.4 and cpg, = 0.95.
Swarms of size 400 were considered. For the Hybrid approach, the number of iterations used in parts A, B

and C were 100, 100 and 100, respectively.

2.00E+30
EPSO

LOOE#30 | _ e
1.80E+30 -

1.70E+30 -

1.60E+30 - |

Alpine

1.50E+30 -+ !

1.40E+30 - r

|

|

h]
|
|
LY

1.30E+30 T T T T T T b T T T T T T T T T T
0 50 100 150 200 250

Iterations

Figure R1/ 4 - Results for Alpine function with Hybrid [dim 120 — 50 — 120] and EPSO [dim 120]. Average of 10 runs.

1.60E+53

so | eeeme==-

1.40E+53 - -
— — — HyBrid 4

1.20E+53 -

1.00E+53

L
AN

8.00E+52 - ,

Alpine
AY

6.00E+52 ’

4,00E+52

2.00E+52 - 4

0.00E400 +——r—T——T—T——T=——T——T=—T——T— T~ L S B e e T T
0 50 100 150 200 250
Iterations

Figure R1/ 5 - Results for Alpine function with Hybrid [dim 120 — 50 — 120] and EPSO [dim 120]. Average of 10 runs.

The results obtained are presented in the above figure. For this case, the solution achieved with the hybrid
approach are not only higher and better, as they also evidence a magnitude of a higher order (1.51E+53)
than the one observed with the classic EPSO (1.65E+30). The above two figures show the Alpine function

optimized using EPSO and using the Hybrid approach and the difference between them is on magnitude

LASCA Project — Final Report 20

scale. The first figure is adjusted for the EPSO fitness solution and the scale of second figure is adjusted for

the Hybrid fitness solution.

Experiment 2 [dim 200 — 70 — 200]

The tests conducted concerning this function and this experiment were performed in

RZOO

concerning the

domain [0,10]%°C. The same values for the parameters found in experiment 1 are kept, changing only the

dimension of the original space (with dimension 200) and of the reduced space (with dimension 70).

3.80E+48 EP50

— — = HyBrid
3.30E+48

2.80E+48

2.30E+48

Alpine

1.80E+48 - I

1.30E+48 — T

100

150
Iterations

Figure R1/ 6 - Results for Alpine function with Hybrid [dim 200-70-200] and EPSO [dim 200]. Average of 10 runs, scalel.

1.00E+89

EP50
9.00E+88

8006488 -~~~ HyBrid
7 00E+88 -
6.00E+88 -

S.00E+88 -

Alpine

4.00E+28 -

3.00E+88 -

2.00DE+B8 -

1.ODE+E8 -

1.30E+30

150
Iterations

200

-

250

—— ===
-—-—

Figure R1/ 7 - Results for Alpine function with Hybrid [dim 200-70-200] and EPSO [dim 200]. Average of 10 runs, scale 2.

The EPSO approach achieved a fitness value of 2.88E+48 after 300 iterations, and the hybrid approach a

fitness value of 8.58E+88 for the same number of iterations.

LASCA Project — Final Report

21

Experiment 3 [dim 200 — 100 - 200]

This experiment is performed in R?°? concerning the domain [0,10]2°°. The same values for the
parameters found in experiment 1 are kept, changing only the dimension of the original space (with

dimension 200) and of the reduced space (with dimension 100).

3.80E+48 - EPSO
— — — HyBrid
3.30E+48 -

2.80E+48 -

Alpine

2.30E+48 -]

1.80E+48 -

1.30E+48 T T) T T T T T T T T T T T T T T T T
0 50 100 150 200 250

Iterations

Figure R1/ 8 - Results for Alpine function with Hybrid [dim 200-100-200] and EPSO [dim 200]. Average of 10 runs, scale 1.

1.20E+89 -
SO eaea-
1.00E+89 | = = = HyBrid ,

8.00E+88 - ,

6.00E+88 - ,

Alpine
Y

4.00E+88 - /

2.00E+88 .

1.30E+30 == =rm == v == === === T ; T
0 50 100 150 200 250
Iterations

Figure R1/ 9 - Results for Alpine function with Hybrid [dim 200-100-200] and EPSO [dim 200]. Average of 10 runs, scale 2.

The Hybrid approach achieved a final fitness value of 1.12E+89, while the EPSO achieved a maximum fitness

of 2.88E+48 after 300 iterations both.

LASCA Project — Final Report 22

Experiment 4 [dim 300 — 100 - 300]

R3%9° and a domain [0, 10]3°°. All parameter values obtained

This experiment considered the original space
in experiment 1 were kept. The dimension of the original space was set as 300, and for the small space was

set at 100.

2.00E+72 -
EPSO
1.80E+72 | = — — HyBrid
1.60E+72 -

1.40E+72 -

1.20E+72 - !

Alpine

1.00E+72 - !

8.00E+71 p

-

6.00E+71 T 1
0 50 100 150 200 250

Iterations

Figure R1/ 10 - Results for Alpine function with Hybrid [dim 300-100-300] and EPSO [dim 300]. Average of 10 runs, scale 1.

9.00£+132 - EPSO

— — — HyBrid -~
8.00E+132 - -

7.00E+132 - ’
6.00E+132 -
5.00E+132 - 4

4.00E+132 - /

Alpine

3.00E+132 - !
2.00E+132 - ’

1.00E+132 - ’

1.30E+30 === r == == == a=rm==r==a" T
0 50 100 150 200 250

Iterations

Figure R1/ 11 - Results for Alpine function with Hybrid [dim 300-100-300] and EPSO [dim 300]. Average of 10 runs, scale 2.

Again, the Hybrid approach found fitness values significantly higher than the EPSO approach. The Hybrid
approach achieved a final value of 8.91E+132, whilst the EPSO a final fitness value of 1.28E+72, both at the

end of 300 iterations.

LASCA Project — Final Report 23

Experiment 5 [dim 300 — 150 — 300]

Again within an original space R3°° and with a domain of [0,10]3%°, this experiment differs from
experiment 4 with the specification of a hidden layer with the dimension of 150. All parameter values

adopted in experiment 1 were kept.

2.00E+72 -
EPSO
1.80E+72 1 — — —HyBrid
1.60E+72

1.40E+72 -~

1.20E+72 - !

Alpine

1.00E+72 -~ '

8.00E+71 - i

-

60071 —¢ 77+ TtV 77— T T
0 50 100 150 200 250

Iterations

Figure R1/ 12 - Results for Alpine function with Hybrid [dim 300-150-300] and EPSO [dim 300]. Average of 10 runs, scale 1.

1.60E+133 -
EPSO PP
1.40E+133 + .=

= = = HyBrid -
1.20E+133 - P
1.00E+133 -

8.00E+132 - /

6.00E+132 /

Alpine

4.00E+132 - I'4

2.00E+132 - ’

1.30E+30 ——>—r—r—"T—-1T—"T—"r—T—Tr—— T T T T
0 50 100 150 200 250

Iterations

Figure R1/ 13 - Results for Alpine function with Hybrid [dim 300-150-300] and EPSO [dim 300]. Average of 10 runs, scale 2.

The EPSO result obtained in this experiment is similar than the one obtained in experiment 4. The

performance of the hybrid approach achieved a final fitness value of 1.52E+133.

LASCA Project — Final Report 24

12 5 Rosenbrock Function

The Rosenbrock function was firstly proposed in 1960 (Rosenbrock, 1960), and is defined as shown in
expression Eq. R1/(2). The visualization of this function in R? is provided in Figure R1/ 14 and in Figure R1/
15.

D-1

fQxg, o, xp) = z [100(xi2 - xi+1)2 + (x; — 1)2] Eq.R1/(2)
=1

Figure R1/ 14 - Visualization of Rosenbrock
function in R?, from (Wikipedia, 2012b). Figure R1/ 15 - Visualization of Rosenbrock function in R?, from
(Richling, 2009).

This function has several local minima and the global one is achieved at

x* =(1,--,1) with f(x*) = 0[10, 11, p. 251].

Experiment 1 [dim 120 — 50 — 120]

The dimension of the autoencoder used was specified in [dim 120 — 50 — 120] and the domain was
specified as [—30,30]*?°. The autoencoder was trained using the ITL plus classic backpropagation
algorithm. The activation functions defined for the 2" and 3™ layers were hyperbolic tangent and
piecewise-linear, respectively. Data were normalized with MinMax by entrance. The initial value of learning
rate was specified at 0.5 and the number of epochs applied was 2000. Each swarm included 200 particles.
The number of iterations of parts A, B and C were 100, 50 and 150, respectively. The parameters found to

best perform with EPSO in S were g = 0.8 and cps = 0.9, and in §’ 75, = 0.6 and cps, = 0.5.

LASCA Project — Final Report 25

180

170

160

EPSO

— — = Hybrid

150

140

130

Rosenbrock

120

110

100 T

150
Iterations

Figure R1/ 16 - Results for Rosenbrock function with Hybrid [dim 120 — 50 — 120] and EPSO [dim 120]. Average of 10 runs.

The figure presents the results obtained. For this case, the solution achieved with the hybrid approach

(117.008) is equivalent to the EPSO solution (116.461).
Experiment 2 [dim 200 — 70/100 — 200]

Using the values obtained in experiment 1 for all parameters, this experiment induces a change on the

dimension of original and reduced spaces. The two reductions were tested: [dim 200-70-200] and [dim 200-
100-200].

235

230

225

EPSO
Hybrid 70

Hybrid 100

220

215

210

Rosenbrock

205

200

195 T T T T

T T T T T T T T T T T T T

150
Iterations

Figure R1/ 17 - Results for Rosenbrock function with Hybrid [dim 200 — 70 — 200], Hybrid [dim 200 — 100-200] and EPSO [dim
200]. Average of 10 runs.

LASCA Project — Final Report 26

The best fitness value obtained with EPSO was 197.078, which is an equivalent result than the two Hybrid
approaches tested: for [dim 200-100-200] the best fitness value obtained was 196.557, and for [dim 200-
70-200] the best fitness result was 197.155.

Experiment 3 [dim 300 — 100/150 — 300]

Again, changes on the dimensions of the spaces used are considered. Here the original space is established

with dimensionality of 300, and the reduced space was tested with dimensions 100 and 150.

300.0

J

EPSO
2995 - = = = Hybrid 100
X I L Hybrid 150
299.0 +

298.5 ~=le

Rosenbrock

298.0 4 e

297.5 4 ~-

297.0 T T — — T — — — T
0 50 100 150 200 250 300
Iterations

Figure R1/ 18 - Results for Rosenbrock function with Hybrid [dim 300-100-300], Hybrid [dim 300-150-300] and EPSO [dim 300].
Average of 10 runs.

Here, the results obtained with Hybrid approach revealed again equivalent to the EPSO results. The final
fitness obtained with EPSO over 300 iterations was 297.387, and with Hybrid [dim 300-100-300] the best
fitness was 297.203, and with Hybrid [dim 300-150-300] the best fitness was 297.329.

13 6 Griewank Function

The Griewank function is specified by (Hedar, 2012a; Pan, Suganthan, Tasgetiren, & Liang, 2010; Weisstein,
2012):

f(x1:" X 1+mz ncos() Eq. R1/(3)

The visualization of this function for R?, concerning the domain [—30, 30]?

LASCA Project — Final Report 27

Figure R1/ 19 - Visualization of the Griewank function in R?, from (Hedar, 2012a).

This function has several local minima and the global one is achieved at

*

x* =(0,--+,0), f(x*) = 0 (Rao & Savsani, 2012, p. 274).
Experiment 1 [dim 120 - 50 — 120]

This experiment considered an original space dimension of 120, and a reduced space dimension of 50. The
domain was specified at [—30,30]'2°. The autoencoder was trained with maximization of mutual
information between the 1% and 2™ layers (1** half), and with backpropagation between 2™ and 3™ layers
(2™ half) (Palma & Hora, 2012). The 2™ layer considered the hyperbolic tangent for activation functions,
whilst the 3™ layer considered piecewise-linear activation functions. Data were normalized using MinMax
by entrance. The initial value of learning rate was specified at 0.5. Each half of the autoencoder was trained
with 2000 epochs. The parameters for EPSO in S where tested. A swarm of 400 particles were selected. The
number of iterations used were 15 in part A, 50 in part B and 100 in part C. The parameters found to best
perform with EPSO for space S were 75 = 0.6 and cps = 0.95 . For the space S’ the parameters found to

best perform were 15, = 0.7 and cpg, = 0.5.

3.00 1
\ EPSO
|
2.50 1 - = = Hybrid
\
\
200 4 !\
\
&~ \
c
S 150 \
2 \
2 \
Lo A
1.00
Q AW
- -~
0.50 TN~ __ L
\
\
A -
0.00 T T T T T T I B e s S e e e]
0 50 100 150
Iterations

Figure R1/ 20 - Results for Griewank function with Hybrid [dim 120 — 50 — 120] and EPSO [dim 120]. Average of 10 runs.

LASCA Project — Final Report 28

For this experiment the Hybrid [dim 120-50-120] returned a final fitness value of 3.56-12, which is a worst
performance than the one observed with EPSO [dim 120], with a final fitness of 5.55E-17.

Experiment 2 [dim 200 - 70/100 — 200]

The same parameters from experiment 1 were adopted. The original space dimension was set at 200. The
reduced space dimensions tested were 70 and 100.

. EPSO
045 - ‘| — — — Hybrid 70
L P Hybrid 100
\
.035 4 1
1
\
v 1
S 025 - \
2 1
Q2 \
= \
O .015 \
\
\
.005 - A .
005 P 50 100 150
Iterations
Figure R1/ 21 - Results for Griewank function with Hybrid [dim 200 — 70 — 200], Hybrid [dim 200-100-200] and EPSO [dim 200].

Average of 10 runs.

The EPSO metaheuristic returned a fitness value of 2.22E-03 after 165 iterations. This result was worse than

the results obtained with the two experiments applying the hybrid approach. With the Hybrid [dim 200 —
70 — 200] the fitness achieved after 165 iterations was 6.63E-12, whilst with Hybrid [dim 200 — 100 — 200]
the fitness obtained was 1.12E-09.

Experiment 3 [dim 300 — 100/150 — 300]

For this experiment the original space was set at 300, and the reduced spaces tested were 100 and 150.

LASCA Project — Final Report 29

2.995 - \ EPSO
|i| = = = Hybrid 70
2495 1 “ --------- Hybrid 100
i

1.995 - \‘
i \
£ \

1.495 - A
2 \
-9 L'_
= .
O 995 | R

______ %,
495 v
s,
.,
>,
et
-.005 T T T B e R
0 50 . 100 150
Iterations

Figure R1/ 22 - Results for Griewank function with Hybrid [dim 300 — 100 — 300], Hybrid [dim 300-150 — 300] and EPSO [dim 300]
Average of 10 runs.

For this experiment the EPSO and Hybrid approaches present, at the end of the 165 iterations, equivalent
solutions.

14 7 Sphere Function

The Sphere function is specified by:

D

Fla,xp) =) xi?

Eq. R1/(4)
i=1

The visualization of this function for R%, concerning the domain [—30, 30]? is:

Figure R1/ 23 - Visualization of the Sphere function in R? Figure R1/ 24 - Visualization of the Sphere function in R2
from (MathWorks, 2012). from (Hedar, 2012c).

This function has no local minimum except the global one. The global minima is achieved at
x* =(0,--,0), f(x*) = 0 (Rao & Savsani, 2012, p. 235).

LASCA Project — Final Report 30

Experiment 1 [dim 120 - 50 - 120]

The dimension of the autoencoder was specified in [dim 120 — 50 — 120] and the domain was specified as
[—30,30]'29. For the best result obtained, in addition to the general parameters, the autoencoder was
trained using the ITL plus Prop approach. The activation functions for the second and third layer was the
hyperbolic tangent. The normalization was made using MinMax Global algorithm. The initial value of
learning rate was specified at 0.5 and the number of epochs applied was 2000 for first part using ITL
training and more 2000 for the second half using Prop training. The parameters for EPSO in space S were
tested. A swarm of 200 particles were selected. The number of iterations used were 100 in part A, 100 in
part B and 100 in part C. The parameters found to best perform with EPSO for space S were 73 = 0.7 and

cps = 0.9. For the space S’ the parameters found to best perform were 15, = 0.8 and cps, = 0.5.

75 - \ EPSO
\ - = = Hybrid
65 \ yori
55 - N\

45

35

Sphere

25

15 4 |

5 ~

- ——
- - -

50

50

150 200

250

Iterations

Figure R1/ 25 - Results for Sphere function with hybrid [dim 120 — 50 — 120] and EPSO [dim 120]. Average of 10 runs.

For this experiment the hybrid approach returned a significantly better performance with a final fitness
value of 0.0396142 in comparison with EPSO approach which achieved a final fitness value of 18.0566, both

with 100 iterations.

Experiment 2 [dim 200 — 70/100 — 200]

Using the same parameters, changing the dimensions for the original and reduced spaces. The original

space dimension was set in 200. The reduced space dimensions tested were 70 and 100.

LASCA Project — Final Report 31

190 - \
‘\\ EPSO
. = = = Hybrid 70
. ++eseeees Hybrid 100
.
Q
3]
] 90 -
Q.
[7,]
40 - b
i)
1-
":-.'.-..-.-..,-.'.::.r..z.:?..?..w...—..ﬁ...—.,w..ﬂ.zs_m_m___ T T T T T PP
-10 ¢ 50 100 150 200 250
Iterations

Figure R1/ 26 - Results for Sphere function with hybrid [dim 200 — 70 - 200], hybrid [dim 200-100-200] and EPSO [dim 200].

It is possible to observe that both Hybrid approaches returned best performance and significantly better
final results than the EPSO approach with a final fitness value of 62.8726, during the 300 iterations. The
differences between the hybrid approaches were not significant, both returned accurate results: hybrid

[dim 200-70-200] with a final fitness of 1.07285 and hybrid [dim 200 — 100 — 200] with a final fitness of

0.360871.

Experiment 3 [dim 300 — 100/150 — 300]

For this experiment, an original space of dimension 300 was considered. Two reduced space dimensions

were tested: 100 and 150.

Average of 10 runs.

290 \

240 -

190 -

140 -

Sphere

90

40 -|

3
1
i

R,
"L e TP L TR ST PP ST T, T

EPSO
— = = Hybrid 100
eevevenes Hybrid 150

A ket et el l® "l * e Tl ¢ Bt et ® O S * B S Bl S

,10 J

T T T T T T T T

100 150 200 250

Iterations

Figure R1/ 27 - Results for Sohere function with Hybrid [dim 300-100-300], Hybrid [dim 300-150-300] and EPSO [dim 300].

LASCA Project — Final Report

Average of 10 runs.

32

The results obtained suggest the adequacy of the hybrid approach, which returned better results than EPSO
for both dimensions tested: hybrid [dim 300-100-300] with a final fitness value of 2.13499 and [dim 300-
150-300] with a final fitness value of 2.93594. The EPSO returned a final fitness value of 129.813.

15 8 Shift Rastrigin Function

The Shift Rastrigin function is specified as follows:

D
f(xq, =, xp) =A-n+ Z[xlz — A~ cos2rx)| + foias Eq. R1/(5)
=1

Where A = 10 and f};,s = —330.

The visualization of this function for R? is provided in Figure R1/ 28, concerning the domain [—5.12,5.12]?

(Pan et al., 2010).

Figure R1/ 28 - Visualization of Shift Rastrigin function in R%, from (Wikipedia, 2012a).

This function has several local minima, the global minimum is achieved at

x* =(0,--,0), f(x*) = —330 (Rao & Savsani, 2012, p. 266).

Experiment 1 [dim 120 — 50 — 120]

The tests conducted concerning this function and this experiment were performed concerning the domain
[-5.12,5.12]20. In that case, the dimension of the autoencoder used was specified as [dim 120 — 50 —
120]. The autoencoder was trained with PROP during 2000 epochs. The adopted activation function for the
2" layer was hyperbolic tangent, and for 3" layer piecewise-linear. Data were normalized with MinMax
Global (Palma & Hora, 2012). The adaptive learning rate started at 0.5. The best parameters found for EPSO

in S were: g = 0.9 and cpg = 0.9, and for EPSO in §”: 75, = 0.8 and cpg, = 0.4. Each swarm included 400

LASCA Project — Final Report 33

particles. The number of iterations for parts A, B and C were 100, 30, 100, respectively. The results obtained

for this experiment are present in Figure R1/ 29.

2707 \ EPSO

\
P \ — — = HyBrid

-290 - \
-300 - \

-310 - ~

N~ - ——

s

Shifed Rastringin
Id
J

-320 -+

-330 T T T T T T T T T T T T
0 50 100 150 200

Iterations

Figure R1/ 29 - Results for Shift Rastrigin function with Hybrid [dim 120 — 50 — 120] and EPSO [dim 120]. Average of 10 runs.

For this case the EPSO achieved an equivalent solution to the Hybrid approach. The final fitness value
obtained with Hybrid [dim 120-50-120] was -318.09, whilst with EPSO [dim 120] for the same number of

iterations the fitness achieved was -318.08.

Experiment 2 [dim 200 — 70/100 - 200]

Using the same parameters, changing the dimensions for the original and reduced spaces. The original

space dimension was set in 200. The reduced space dimensions tested were 70 and 100.

-280 - \
EPSO

-285 1 \ — — — HyBrid 70
-290 - \ +++==+ HyBrid 100
-295 -
-300 - o

4305 - aa

-310 + "

Shifed Rastringin

-315 4 T T T s e e -

-320 T T T T T T T T T T T T
0 50 100 150 200

Iterations

Figure R1/ 30 - Results for Shift Rastrigin function with hybrid [dim 200 — 70 - 200], hybrid [dim 200-100-200] and EPSO [dim
200]. Average of 10 runs.

LASCA Project — Final Report 34

Here, each swarm includes 200 particles. It is possible to observe that Hybrid 70 approach returned best
performance (final fitness values of -315.983) than the EPSO approach with a final fitness value of -314.651,
during the 230 iterations. The Hybrid 100 approach reveals an equivalent performance to EPSO with a final

fitness value of and -314.712.

Experiment 3 [dim 300 — 100/150 — 300]

For this experiment, an original space of dimension 300 was considered. Two reduced space dimensions

were tested: 100 and 150. Here, each swarm includes 200 particles.

-280 -+
EPSO

-285
— — — HyBrid 100
-290 L [HyBrid 150
-295 - \

-300 - \

-305 - -~

ta.

Shifed Rastringin

315 - e

.
Ceey = -

-320 - teetetrrrrt e T I T T T TS

-325 T T T T T T T T T T
0 50 100 150 200

Iterations

Figure R1/ 31 - Results for Shift Rastrigin function with Hybrid [dim 300-100-300], Hybrid [dim 300-150-300] and EPSO [dim 300].
Average of 10 runs.

The results obtained suggest the adequacy of the hybrid approach, which returned better results than EPSO
for both dimensions tested: hybrid [dim 300-100-300] with a final fitness value of -320.408 and [dim 300-
150-300] with a final fitness value of -321.161. The EPSO approach returned a final fitness value of -
318.264.

16 9 Shift Schwefel Function
The Shift Schwefel function (Problem 1.2) is specified as follows:

D /i 2

f(x1,~-,xp)=z in + foias Eq. R1/(6)

i=1 \j=1

LASCA Project — Final Report 35

Where fy;qs = —450. The visualization of this function in R? is provided in Figure R1/ 32 and in Figure R1/
33.

Figure R1/ 32 - Visualization of Shift Schwefel function Figure R1/ 33 - Visualization of Schwefel function in Rz,
in R from (Pan et al., 2010). from (Hedar, 2012b).

This function has several local minima. The global minima is achieved at

x* =(0,--,0), f(x*) = —450 (Rao & Savsani, 2012, p. 243).

Experiment 1 [120 — 50 — 120]

The dimension of the autoencoder was specified in [dim 120 — 50 — 120] and the domain was specified as
[—30,30]*2°. The autoencoder was trained using the ITL (Cauchy-Schwartz) plus Prop approach. The
adopted activation functions for the 2" and 3" layers were hyperbolic tangent and piecewise-linear,
respectively. Data were normalized with MinMax Entrance (Palma & Hora, 2012). The adaptive learning
rate started with the value 0.5. The number of epochs applied was 2000 for first part using ITL training and
more 2000 for the second half using Prop training. The parameters for EPSO in space S where tested. A
swarm of 400 particles were selected. The number of iterations used were 10 in part A, 10 in part B and 60
in part C. The parameters found to best perform with EPSO for space S were 73 = 0.8 and cps = 0.9. For

the space S’ the parameters found to best perform were 75, = 0.1 and cpg, = 0.9.

LASCA Project — Final Report 36

39549 4

\ EPSO
34549

= = = HyBrid
29549 -
24549 - \

19549 - \

14549 - \

ShifSchwefel

9549

1
-

L
/

4549

-451

Iterations

Figure R1/ 34 - Results for Shift Schwefel function with Hybrid [dim 120 — 50 — 120] and EPSO [dim 120]. Average of 10 runs.

Experiment 2 [dim 200 — 70/100 — 200]

Using the same parameters of experiment 1 for an original space dimension of 200. The reduced space

dimensions tested were 70 and 100.

% EPSO
135491 ’\ = = = HyBrid 70
11549 - P HyBrid 100
9549 - -
7549 - W

5549 - A

ShifSchwefel

3549 - N,

I
f‘.

1549

-451

; . """‘-'l-l"-l----.o—----_._,.............._.....,....._.........._......7

0 10 20 30 40 50 60 70

Iterations

Figure R1/ 35 - Results for Shift Schwefel function with Hybrid [dim 200 — 70/100 — 200] and EPSO [dim 200]. Average of 10 runs.

The EPSO result revealed slightly better than both hybrid approaches: hybrid [dim 200 — 70 — 200] with a

final fitness value of -449.329, the hybrid [dim 200-100-200] with -449.154 and EPSO reach the optimum of
-449.778.

LASCA Project — Final Report 37

Experiment 3 [dim 300 — 100/150 — 300]

For this experiment the original space dimension was set at 300. The reduced space dimensions were set at

100 and 150.

EPSQO

|}
\
13549 l‘ “ — — — HyBrid 100
1

11549 - T e HyBrid 150
9549 - \
7549 - MY

5549 - \

ShifSchwefel

3549 A

1549 -+ > o

=—lttes..
-451 ; ; et b e e i s e e

0 10 20 30 40 50 60 70

Iterations

Figure R1/ 36 - Results for Shift Schwefel function with Hybrid [dim 300 — 100/150 — 300] and EPSO [dim 300]. Average of 10
runs.

The EPSO result revealed better than both hybrid approaches: hybrid [dim 300 — 100 — 300] with a final
fitness value of -447.226, the hybrid [dim 300 — 150 — 300] with -444.968 and EPSO with a fitness value of -
448.684.

17 10 Shift Sphere Function
The Shift Sphere function is specified as follows:
D
f(xy, -, xp) = z Xi® + fpias Eq. R1/(7)
i=1
Where fpiqs = —450.

The visualization of this function for R?, concerning the domain [—=100, 100]? is further provided:

LASCA Project — Final Report 38

Figure R1/ 37 - Visualization of the Sphere function in R?, from (Pan et al., 2010).

Experiment 1 [dim 120 - 50 - 120]

The dimension of the autoencoder was specified in [dim 120 — 50 — 120] and the domain was specified as
[—100,100]*2°. For the best result obtained, in addition to the general parameters, the autoencoder was
trained using the ITL plus Prop approach. The activation functions are hyperbolic tangent for the second
and the third layer. The normalization was made using MinMax Global algorithm. The initial value of
learning rate was specified at 0.5 and the number of epochs applied was 2000 for first part using ITL
training and more 2000 for the second half using Prop training. The parameters for EPSO in space S where
tested. A swarm of 400 particles were selected. The number of iterations used were 100 in part A, 100 in
part B and 100 in part C. The parameters found to best perform with EPSO for space S were 73 = 0.7 and

cps = 0.9. For the space S’ the parameters found to best perform were 15, = 0.8 and cps, = 0.5.

-310 \ EPSO
\ = = = HyBrid
-330 \

-350 - \
-370 | .

-390 N~

-410

Shifted Sphere
/

-430

_450 T T T T T T T T T T T T T T L T T T
0 50 100 150 200 250 300

Iterations

Figure R1/ 38 - Results for Shift Sphere function [dim 120 — 50 — 120]. Average of 10 runs.

LASCA Project — Final Report 39

Experiment 2 [dim 200 — 70/100 — 200]

Using the same parameters of experiment 1 for an original space dimension of 200. The reduced space

dimensions tested were 70 and 100.

'250.0 T T ‘ T T T T T T T T T T T T T
0 50\ 1po 150 200 EPSO
.\
-300.0 "N — — — HyBrid 70
.\\\
~d e HyBrid 100
Q
L -350.0 4
Q
=
Q
[7,]
=
£ -400.0 -
[75]
)
B
-450.0 - e et et e e et o o
-500.0 -
Iterations

Figure R1/ 39 - Results for Shift Sphere function with Hybrid [dim 200-70-200], Hybrid [dim 200-100-200] and EPSO [dim 200].
Average of 10 runs.

Both hybrid approaches showed a better performance than EPSO: hybrid [dim 200 — 70 — 200] with a final
fitness value of -449.691, the hybrid [dim 200 — 100 — 200] with -449.746 and EPSO with -390.464.
Experiment 3 [dim 300 — 100/150 — 300]

For this experiment the original space dimension was set at 300. The reduced space dimensions were set at

100 and 150.

LASCA Project — Final Report 40

'150.0 T T _ T T T T T T T T T
\
0 50 .\.\ 1p0o 150 200 EPSO
-200.0 \\
_\\\ — = = HyBrid 100
-250.0 -
--------- HyBrid 150

(]
| .
o -300.0
<
Q.
4]
‘= -350.0 -
7]

-400.0 -

'l\
4504 e ——————————— e o o s+ e o s s o e e ¢ e e e+
-500.0 -
Iterations

Figure R1/ 40 - Results for Shift Sphere function with Hybrid [dim 300-100-300], Hybrid [dim 300-150-300] and EPSO [dim 300].
Average of 10 runs.
Both hybrid approaches returned better results than EPSO. Hybrid [dim 300 — 100 — 300] with a final fitness
value of -449.547, Hybrid [dim 300 — 150 — 300] with -449.754, and EPSO with -328.48.

18 11 Hydro-Wind problem

The Hydro-Wind / Hydrothermal / Hydroelectric coordination problem aims at maximizing the joint profit
or minimize the joint cost of a power system composed by several hydro and wind farms. The maximization
/ minimization is made by changing the water volumes to be pumped and released, given a set of
specifications defining each scenario. These specifications include the wind forecast or the water inflow to
the system. Due to the high complexity this problem can achieve, the operation planning is normally made
with multiple approaches for different horizons of analysis (Lyra, Tavares, & Soares, 1984): from the short

term (days) to the long term (years).

This problem has been widely studied: in (Chang, Chen, Fong, & Luh, 1990) this problem is addressed with a
differential dynamic programming algorithm, decomposition and coordination techniques are considered in
(Soares, Lyra, & Tavares, 1980) and a genetic algorithm approach was proposed in (Zoumas, Bakirtzis,
Theocharis, & Petridis, 2004). An insightful review concerning applications and methods for this problem is

provided in (Labadie, 2004).

The problem formulation followed in this work is similar to the one proposed in (Soares & Carneiro, 1991),

which considers the optimal operation in a deterministic context, meaning that future inflows (of water, of

LASCA Project — Final Report 41

wind energy) are considered as an assumption — although these values are now actually known, the

objective is to analyze the system response to a specific situation (a posteriori analysis).

The problem presented in this work considers differentiation concerning peak and off-peak periods: the
power demand suffers high variations concerning day and night periods. Moreover, these demands also
vary from season to season (the season variation is not contemplated in this formulation, since we are
mostly devoted to solve a short period problem). Other energy sources, such as nuclear and fossil fuel
plants, are inefficient in generating power for short periods of increased demand (US DIBRPRO, 2005). On
the other hand, hydroelectric generators can be started and stopped almost instantly, making the energy
produced in hydro farms timely responsive to peak demands. Water can be stored in reservoirs during off-

peak periods, and used to produce energy during the peak periods.

This section is organized as follows. Sub-section 11.1 contains a detailed Hydro-Wind problem
mathematical formulation. Sub-sections 11.2 and 11.3 include the results and discussion on the application

of Hybrid and EPSO to the Hydro-Wind case studies of 8 and 12 reservoirs, respectively.

18.1 11.1 Problem formulation

The general definition of potential energy (E, in J) is given by equation Eq. R1/(8).

E: potential energy (J);
m: mass (kg);
E=m-g-h Eq.R1/(8) g: gravity acceleration
(m/s?);
h: height (m);

Considering a generic time moment At divided in both terms of equation Eq. R1/(8), and knowing that

m/At = p - g, the equation Eq. R1/(9) can be formulated.

E m . At:time moment (s);
—=—-g-h=p-g-h- ’
At At g pg q

Eq.R1/(9) P:Water density (kg/m?);

q: flow rate (m3/s);

Equation Eq. R1/(9) can be reorganized as specified in equation Eq. R1/(10).

LASCA Project — Final Report 42

E=p-g-h-q At Eq. R1/(10)

A Hydro farm produces energy by employing the principle described in equation Eq. R1/(10) using turbines,
either to pump or to turbine water. This process is associated with energy losses, from where the
consideration of an efficiency term n, which is directly multiplied to equation Eq. R1/(10), leading to

equation Eq. R1/(11).

E=n-p-g-h-q At Eq. R1/(11)

The electric energy of hydro origin generated in moment t by reservoir n is described by equation Eq. R1/(

12).

where:

. H,";J- - the energy generated by the n®* reservoir in period t if j = turbine, or the energy consumed if
Jj = pump (in Wh);

e N —the number of hydro power plants included in the system;

e K,; - a specified constant for each reservoir, which considers the gravitational acceleration (g), the
efficiency of the turbine (7) and the water density (p): K, ; =71 - p * g. This constant takes different values
for pumping (j = pump) and generation (j = turbine) modes, concerning the different efficiencies
involved,;

e x! - the volume stored in the nt" reservoir at the beginning of the period t (in m3);

e g} - volume of water transferred between the nt" and the immediately downstream reservoirs, at moment ¢:
assumes negative values for volumes pumped into the reservoir, and positive values for volumes released
out of the reservoir (in m3);

e z! - the volume of water spilled during the period t (in m3);

e h,() - function returning the estimation of the water head (height) given a water volume, for the
nt"reservoir (in m).

The available water volume for each reservoir is calculated for each period considering the variables
associated to the reservoir, such as the natural affluences, the volume of water pumped or used in
generation, the volume of water spilled and finally the already existing water volume, all of them in the
previous period of time, and also considering the variables associated to the operation of the upstream
reservoirs such as the quantity of water that was used for generation and now haves to be accommodated
in the downstream reservoirs and also the water volume spilled from the upstream reservoirs. So in the
Hydro-Wind coordination model, the procedure above is mathematically represented as dictated in
equation Eq. R1/(13).
ittt =xh +yn + Z[qltc +zi] — qn — 7y, Eq. R1/(13)

keQ
where:

e y! —volume of water entering the nt" reservoir concerning natural river inflow (in m3);
e QO —set of hydro reservoirs immediately upstream of the nt" reservoir;

LASCA Project — Final Report 43

Under this case study, the EPSO algorithm is applied to optimize a particle g, which includes the volumes
qL, for each reservoir under each temporal moment, as specified in Eq. R1/(14), where N refers to the total

number of reservoirs, and T to the total number of temporal moments.

q= [q%' q%"";q%h "';Q{; qgl 'q17\;] Eq. R1/(14)

Constraints ensuring reservoirs’ capacities

Assuming that the system always starts with water volumes x. respecting the corresponding reservoir
minimum and maximum capacity limits m,, and M,,, respectively, the model must ensure these limits are
satisfied in further temporal moments. Therefore, the volume of the nt" reservoir at moment t + 1 must

respect:

t+1
m, <x;" <M, Eq. R1/(15)

Combining equation Eq. R1/(13) and Eqg. R1/(15), one can obtain the dynamic constraints specified in Eq.
R1/(16) and Eq. R1/(17), which are applied to each position of q.

X+ yh+) gk + 2] - 2 — My < g Eq. R1/(16
keQ

x5+ yy + Z[q}i + 2] = z;, —my > qp, Eq. R1/(17)
keQ

Constraints ensuring turbines’ capacities

For each reservoir, the specifications on the turbines installed were considered, which allowed the
estimation of maximum and minimum volumes they are able to release or pump. These constraints are

considered in the model as represented in Eq. R1/(18).

min t max
qn < qn < qn Eq. R1/(18)

Constraints ensuring the available water to pump

When the decision to pump water is made, the maximum value of volume to pump must also be restricted
to the available volume in the immediately downstream reservoir (IDR). This constraint is only meaningful
to the pumping case since when releasing water, even if the IDR exceeds its maximum capacity, it would
spill out the overflow. Accordingly, the maximum volume of water to pump into the nt” reservoir, v, is

defined in Eq. R1/(19), and constrains g, as defined in Eq. R1/(20).
y}i = xItDR — Mypr Eq. Rl/(19)

t t
Yn < Gn Eq. R1/(20)

LASCA Project — Final Report 44

The energy generated at wind farms per period is estimated as wt by an external forecasting procedure —
and taken as data in this example of coordination planning. Its value per period is derived from the wind
series and each wind farm production characteristic, which can be modeled separately from the
optimization procedure. In fact, as there are no “reservoirs for wind”, the generation forecast is a direct
function of the wind forecast. An auxiliary vector w is considered, where each element w refers to the

available wind energy for the n"*reservoir at moment ¢, and this vector is updated as further described.

Value of energy produced by water released

When g, takes a positive value, meaning the decision of releasing water was made, the corresponding
energy is calculated following equation Eq. R1/(12). The value associated to this energy is further
calculated by considering the corresponding price, depending if the period type is peak or off-peak, as

detailed in Eq. R1/(21).

Ht -P . .
V;f,A _ { nturb " FA1 ,if under peak period Eq. R1/(21)

Hrfl‘turb “Pyo ,if under off-peak period

Value of energy consumed to pump water

When ¢}, takes a negative value, indicating the decision of pumping, the energy necessary to pump is
calculated using equation Eq. R1/(12). Two possibilities may happen when the decision of pumping water is
made: there is enough wind energy available w, to pump the water, or there is not. When there is enough
wind energy available (i.e. wf > H,";'pump), w; is used. In this case, the value of the wind energy spent to
pump is calculated by Eq. R1/(22).

Vi, = {H{L,pump "Pg, ,-if under peak period.
g Hf pumyp * Pro ,if under off-peak period

Eq. R1/(22)

The second possibility is that there is not enough wind energy available (i.e. wi < Hf,,pump). In this
scenario, the model spends all the available energy from wind farms and buys the remainder necessary
energy from grid (i.e. G, = H,tl,pump — wt). In this situation, the equation Eq. R1/(22) is used to calculate

the value of the energy consumed from wind farms, and equation Eq. R1/(23) is considered to calculate the

value of the energy bought from grid to pump.

Ht _ Wt . P . .
vt = {(n,pump m) " Pca ,if under peak period Eq. R1/(23)

(H,':prnz[J —wp) Py ,if under off-peak period
For both cases, the wind energy available is updated, to provide accurate energy assessment of all

reservoirs under the same temporal moment.

LASCA Project — Final Report 45

Value of wind energy

When all reservoirs are assessed for a specified temporal moment, the model will calculate the monetary
value of the available wind energy at that moment, if any is available, which is considered to be sold to the

grid. This value is estimated as defined in Eq. R1/(24).

t . .
¢ _ (wn-Pp1 if under peak period
Vup = {Wfl “Ppo if under off-peak period Eq. R1/(24)
System’s revenue
The revenue obtained with each reservoir is defined in Eq. R1/(25):
Vig+Vig = Vig =Vt i
R;:1 — . n,A . n,B . n,B . n,C . ,!fn f N Eq. R1/(25)
Vn,A + Vn,B - Vn,B - Vn,C + Vn,D Jifn=N

Finally, once all reservoirs are assessed for all temporal moments, the profit obtained with the entire

system is calculated as defined in Eq. R1/(26).

T N

Profit = Z RL Eq. R1/(26)

t=1n=1

18.2 11.2 Hydro-Wind problem with 8 Reservoirs

This case study concerns to the wind hydro coordination problem with 8 reservoirs. Next the problem

parameters are presented. The next figure shows the structure of the 8 reservoirs:

LASCA Project — Final Report 46

|
:‘_
—
[o
=
—_——
_

1
i
N0

o

Figure R1/ 41 - Simplified scheme of wind - hydro farms with 8 reservoirs.

Experiment

For this case study, the dimension of S is 96, and the dimension of S’ is 50. The autoencoder was trained
with PROP during 2000 epochs. The activation functions for the 2" and 3™ layers were hyperbolic tangent
and piecewise-linear, respectively. Data were normalized with MinMax Entrance. The adaptive learning
rate was set to start at 0.5. The parameters found to best perform with EPSO in § were g = 0.9 and
cps = 0.7. For the space S’ the parameters found to best perform were 75, = 0.8 and cps, = 0.1. The
parameters for EPSO in S were tested. A swarm of 50 particles were selected. The number of iterations

used were 400 in part A, 400 in part B and 200 in part C.

LASCA Project — Final Report 47

8600 -
EPSO

8400 —==HyBrid
R
8000 ,

7800 4 e ————————— /

Profit
Y
\

7600 -

7400

7200 -

7000 T T T T T T r |
0 100 200 300 400 500 600 700 800 900
Iterations

Figure R1/ 42 - Results for 8Reservoirs problem with Hybrid [dim 96 — 50 — 96] and EPSO [dim 96]. Average of 10 runs.

18.3 11.3 Hydro-Wind problem with 12 Reservoirs

This case study concerns to the wind hydro coordination problem with 12 reservoirs. Next figure shows the

structure of the 12 reservoirs.

Figure R1/ 43 - Simplified scheme of wind - hydro farms with 12 reservoirs.

Experiment

In this case study we have only one experiment on dimensions that corresponds to the number of input

problem variables (number fixed). The dimension of the autoencoder was specified in [146 — 50 — 146].

LASCA Project — Final Report 48

For the best result obtained, in addition to the general parameters, the autoencoder was trained using the
classic backpropagation. The activation functions are hyperbolic tangent for the second layer and
piecewise-linear for the third layer. The normalization was made using Global MinMax algorithm. The initial
value of learning rate was specified at 0.5 and the number of epochs applied was 2000. The parameters for
EPSO in space S were tested. A swarm of 50 particles were selected. The number of iterations used were
400 in part A, 400 in part B and 200 in part C. The parameters found to best perform with EPSO for space S
were 7 = 0.9 and cps = 0.1. For the space S’ the parameters found to best perform were 75, = 0.1 and

cps, = 0.5.

32700 4

32600 -

- = =

32500 -+ -

32400 - v

32300 - y

32200 d

32100

32000

12 Reservoirs
~

S

100

200

T

300

400

T

500

T

600

T

700

800

EPSO
— = = Hybrid

T

200

Iterations

Figure R1/ 44 - Results for 12Reservoirs problem with Hybrid [dim 146 — 50 — 146] and EPSO [dim 146]. Average of 10 runs.

LASCA Project — Final Report 49

Figure R1/ 45 - Summary of main specifications for the experiments presented.

19 Bibliography

Chang, S. C,, Chen, C. H,, Fong, I. K,, & Luh, P. B. (1990). Hydroelectric generation scheduling with an
effective differential dynamic programming algorithm. IEEE Transactions on Power Systems, 5(3), 737-
743.

Clerc, M. (1998). The Alpine function. from
http://clerc.maurice.free.fr/pso/Alpine/Alpine Function.htm

Costa, L. (2008). Application of Evolutionary Swarms and Autoencoders to Wind-Hydro coordination.
Faculty of Engineering of the University of Porto, Porto, Portugal.

Hagan, M. T., Demuth, H. B., & Beale, M. H. (1996). Neural Network Design. Boston and London: Pws
Pub.

Hedar, A. (2012a). Test Functions for Unconstrained Global Optimization - Griewank Function.
Retrieved May, 27, 2013, from http://www-optima.amp.i.kyoto-
u.ac.jp/member/student/hedar/Hedar files/TestGO files/Page2537.htm

Hedar, A. (2012b). Test Functions for Unconstrained Global Optimization - Schwefel Function.
Retrieved May, 27, 2013, from http://www-optima.amp.i.kyoto-
u.ac.jp/member/student/hedar/Hedar files/TestGO files/Page2537.htm

Hedar, A. (2012c). Test Functions for Unconstrained Global Optimization - Sphere Function. Retrieved
May, 27, 2013, from http://www-optima.amp.i.kyoto-
u.ac.jp/member/student/hedar/Hedar files/TestGO files/Page2537.htm

Jolliffe, I. T. (2002). Principal Component Analysis. New York: Springer Series in Statistics, Springer.

LASCA Project — Final Report 50

Labadie,]. W. (2004). Optimal Operation of Multireservoir Systems: State-of-the-Art Review. Journal of
Water Resources Planning and Management, 130(2), 93-111.

Lyra, C., Tavares, H., & Soares, S. (1984). Modelling and Optimization of Hydrothermal Generation
Scheduling. IEEE Transaction on Power Apparatus and Systems, 103(8), 2126-2133.

MathWorks. (2012). Documentation Center - Sphere. Retrieved May 22, 2013, from
http://www.mathworks.com/help/matlab/ref/sphere.html

Palma, V., & Hora, J. (2012). Theoretical Concepts of ITL Neural Networks INESC Interim Report. Porto,
Portugal.

Pan, Q. K., Suganthan, P., Tasgetiren, M. F.,, & Liang,]. (2010). A self-adaptive global best harmony
search algorithm for continuous optimization problems. Applied Mathematics and Computation,
216(3), 830-848.

Rao, R. V., & Savsani, V.]. (2012). Mechanical design optimization using advanced optimization
techniques: Springer.

Richling, M. (2009). MR. Retrieved May 29, 2013, from
http://www.mitchr.me/SS/mijrcalc/lispy/exClassicOptBanana-ART.png.html

Rosenbrock, H. H. (1960). An Automatic Method for Finding the Greatest or Least Value of a Function.
Computer Journal, 3(3), 175-184.

Rumelhart, D. E., Hinton, G. E., & Williams, R.]. (1986). Learning Representations by back-propagating
errors. Letters to Nature, 323(9), 533-536.

Soares, S., & Carneiro, A. (1991). Optimal Operation of Reservoirs for Electric Generation. IEEE
Transactions on Power Delivery, 6(3), 1101-1107.

Soares, S., Lyra, C,, & Tavares, H. (1980). Optimal Generation Scheduling of Hydrothermal Power
Systems. IEEE Transactions on Power Apparatus and Systems, 99(3), 1107-1118.

US DIBRPRO. (2005). Managing Water in the West - Hydroelectric Power: U. S. Department of the
Interior Bureau of Reclamation Power Resources Office (US DIBRPRO).

Weisstein, E. W. (2012). MathWorld--A Wolfram Web Resource. from
http://mathworld.wolfram.com/GriewankFunction.html

Wikipedia. (2012a). File: Rastrigin function.png. Retrieved April 12, 2013, from
http://en.wikipedia.org/wiki/File:Rastrigin function.png

Wikipedia. (2012b). Rosenbrock_function. from http://en.wikipedia.org/wiki/Rosenbrock function

Zoumas, C. E., Bakirtzis, A. G., Theocharis,]. B.,, & Petridis, V. (2004). A Genetic Algorithm Solution
Approach to the Hydrothermal Coordination Problem. I[EEE Transactions on Power Systems, 19(2),
1356-1364.

LASCA Project — Final Report 51

Breakers’ state estimation using autoassociative neural
networks

PTDC/EEA-EEL/104278/2008

Report LASCA / R2

20 Abstract

This work addresses the problem of breakers’ topology estimation in power systems. A classification
method is applied, which considers the competition of two autoencoders, each one trained to learn a
specific manifold concerning a breaker’s status: “open” and “closed”. The classification decision is made
with the adoption of the state referring to the autoencoder with the lowest error. The methodology was
applied for 11 breakers, under two modes: the first includes, for the training of the autoencoders, all
information that is immediately adjacent to the breaker and its buses, the second excludes information
concerning the flows directly connected to the respective breaker. The first technique returned
performances that can be considered equivalent to the empirical approach. The second approach tested
(without direct flows), represents a significant gain: without information on direct flows, the empirical
approach is unfeasible. Impressively, this approach achieved 100.00% of accuracy for 4 breakers, and an

accuracy of 98.16% for the worst breaker.

21 1 Introduction

This work is conducted under the research field of breakers’ topology estimation in power systems. The
methodology applied considers two autoencoders trained for each breaker: i) one autoencoder is trained
using instances with status “open”, and ii) a second autoencoder with status “closed”. Both autoencoders
are further applied together as a classifier, following a competitive procedure. Each instance to be classified
(from validation dataset) passes through each autoencoder, being the respective error stored. The
classification decision is made with the adoption of the state referring to the autoencoder with the lowest

error. Previous works addressing a similar methodology are (Miranda, Krstulovic, Keko, Moreira, & Pereira,

LASCA Project — Final Report 52

2012), (Krstulovic, Miranda, Costa, & Pereira, 2013) and (Miranda, Krstulovic, Hora, Palma, & Principe,
2013).

This work explores two case studies: the first encompasses 10 breakers (Breakers 1 to 10), and the second 1
breaker (Breaker 11). The dataset concerning Breakers 1 to 10 is the same as that of study (Krstulovic et al.,
2013), and concerning Breaker 11 is the same as that of study (Miranda et al., 2013). Therefore, the results
here reported are directly comparable. These data were obtained with simulation of IEEE benchmark
network (IEEE RTS Task Force of APM Subcommittee, 1979). The autoencoders used in this work were
implemented in C++ by the authors. Details concerning the methods employed can be found in (Palma &

Hora, 2012; Palma & Martins, 2012; Palma & Martins, 2013).

The main contributions of this work are: i) the employment of autoencoders trained with ITL concepts to
address the problem of breakers’ state estimation (section 5); ii) the proposal of a new approach able to
accurately estimate the breakers’ state without information on flows directly connected to the breakers

(section 6).

This working paper is organized as follows. Section 2 describes the problem. Section 3 summarizes some
measures adequate to assess the performance of classifiers. Section 4 provides the classification results
obtained with an empirical method which work with the establishment of thresholds for the values
observed in the flows where breakers are set. The classification results obtained with the competitive ITL
autoencoders are summarized in Section 5. Section 6 includes the classification results using competitive
ITL autoencoders whose train does not include the flows directly connected to the breakers. Section 7

provides the discussion and conclusions.

22 2 Problem Description

22.1 2.1 Case study 1

Case study 1 addresses the topology estimation on 10 switchers. The electrical scheme for these switchers
is provided in Figure R2/ 1. Details on this load model can be found in (IEEE RTS Task Force of APM

Subcommittee, 1979).

LASCA Project — Final Report 53

Figure R2/ 1 - Case study 1 power system scheme, IEEE RTS 24, with identification of Breakers 1 t010, from (Krstulovic et al.,
2013).
For each breaker, the variables considered include the active and reactive power injected on the buses
adjacent to the breaker, and active and reactive power of flows directly connected to the adjacent buses.
For Breaker 1, the variables considered are: the injected active and reactive power from buses 1 and 2
(P_inj1, Q_inj1, P_inj2 and Q_inj2), the active and reactive power of flows directly connected to buses 1 and
2: flow [1-3] (P_flow1-3 and Q flow1-3), flow [1-5] (P_flow1-5 and Q flow1-5), flow [1-2] (P_flow1-2 and
Q flowi1-2), flow [2-4] (P_flow2-4 and Q_flow2-4) and flow [2-6] (P_flow2-6 and Q flow2-6). Analogous
reasoning is applied for all switchers. Table 1 provides the summary of variables considered for each
breaker, where the cells shaded with green indicate the flows directly connected to the respective breaker.
A note must be made concerning “double flows”, when two buses are connected with more than one flow
(e.g. flow [18-21]). For those cases, the first flow is designated normally (“P_flow18-21") and the second is

designated with the same label ending with the number 2 (“P_flow18-212").

Table R2/ 1 - Variables used for Breakers 1 to 10.

Breake |Breaker |Breaker |Breaker |Breaker |Breaker |Breaker |Breaker |Breaker [Breaker

ri 2 3 4 5 6 7 8 9 10

switch_|switch_ [switch_5|switch_ [switch_ [switch_1|switch_1 [switch_1|switch_1 [switch_2

1-2 3-9 -10 11-13 |12-23 |4-16 5-21 7-18 9-20 1-22

LASCA Project — Final Report 54

-11

0-12

P_inj1 [P_inj3 |P_inj5 |P_inj11 |P_inj12 |P_inj16 |P_inj15 |P_inj17 |P_inj19 |P_inj21
Q_inj1 |Q_inj3 |Q_inj5 |Q_inj11 |Q_inj12 |Q_inj16 |Q_inj15 |Q_inj17 |Q_inj19 |Q_inj21
P_inj2 |P_inj9 |P_inj10 |P_inj13 |P_inj23 |P_inj14 |P_inj21 |P_inj18 |P_inj20 |P_inj22
Q_inj2 |Q_inj9 |Q_inj10 |Q_inj13 |Q_inj23 |Q_inj14 |Q_inj21 |Q_inj18 |Q_inj20 |Q_inj22
P_flow |P_flowl|P_flowl-|P_flowl |P_flow9 |P_flowl |P_flow15 P_flowl [P_flow18
1-3 -3 5 1-14 -12 1-14 -16 6-19 -21
Q_flow |Q_flow |Q_flow1 |Q_flow1|Q_flow9 |Q_flowl |Q_flow1l Q_flowl |Q_flowl
1-3 1-3 1-14 -12 1-14

P_flow |P_flow3 P_flow9 |P_flow1 P_flowl

2-4 -24 -11 0-12 6-17

Q_flow |Q_flow Q_flowl Q_flowl

LASCA Project — Final Report

P_flowl |P_flowl |P_flowl P_flowl |P_flow15
0-11 2-13 6-19 7-22 9-202 |21
Q_flow1|Q_flow1 |Q_flow1l Q_flowl |Q_flowl |Q_flow1l
0-11 2-13 7-22 9-202 |5-21
P_flow4 P_flow15|P_flowl |P_flow2 |P_flow15
2-6 -9 10 -212 8-21 0-23 -212
Q_flow |Q_flow |Q_flow8 Q_flowl |Q_flowl |Q_flow2 |Q_flowl
2-6 4-9 -10 5-212 8-21 0-23 5-212
P_flow |P_flow8|P_flowl |P_flowl |P_flowl |P_flowl |P_flow18
1-5 -9 0-11 3-23 3-23 5-16 -21
Q_flow |Q_flow |Q_flow1l |Q_flow1|Q_flowl|Q_flowl |Q_flowl
1-5 8-9 0-11 3-23 3-23 5-16 8-21

55

P_flow9|P_flowl |P_flowl [P_flow2 P_flow21 P_flowl7
-11 0-12 2-13 0-23 -22 -22
Q_flow |Q_flowl |Q_flow1|Q_flow2 Q_flow2 Q_flowl
9-11 0-12 2-13 0-23 1-22 7-22
P_flow9

-12

Q_flow

9-12

Information for empirical approach

The empirical approach uses only the information concerning the respective flows of the breaker under
study (the cells shaded with green in Table R2/ 1).

Information for autoencoders with all variables

The train of autoencoders includes all variables detailed in Table R2/ 1 for each breaker. Moreover, the

number of neurons composing each layer is summarized in Table R2/ 2.

Table R2/ 2 - Number of neurons composing each layer (autoencoders with all variables).

Layer Bl1 (B2 | B3 | B4 |B5|B6 | B7 | B8 | B9 | B10

Input 14 |18 |16 |16 |16 |14 |16 |12 |12 | 16

Hidden | 10 | 14 |12 |12 |12 |10 |12 |8 |8 |12

Qutput | 14 | 18 |16 |16 |16 |14 |16 |12 |12 | 16

Information for autoencoders without direct flows

The autoencoders which address a breaker without direct flows include all variables not shaded in Table

R2/ 1. The number of neurons considered for each layer is detailed in Table R2/ 3.

Table R2/ 3 - Number of neurons composing each layer (autoencoders without direct flows).

Layer Bl | B2 | B3 |B4 |B5 | B6 | B7 | B8 | B9 | B10

LASCA Project — Final Report 56

Data

The number of instances composing each dataset is detailed in Table R2/ 1. The classification results
presented always refer to the validation dataset, accounting in 10000 instances for each breaker,
concerning instances of status open and closed (Validation_O and Validation_C). The train and test datasets
are used to train each autoencoder: the train instances allow the autoencoder to learn the respective

manifold, and the test dataset ensures the rejection of overfitted models. More details concerning

Input 12 |16 |14 |14 |14 |12 |14 |10 | 10 | 14
Hidden | 8 14 110 |10 |10 | 8 10|16 |6 10
Output | 12 |16 |14 |14 |14 |12 |14 |10 |10 | 14

theoretical aspects on validation, train and test datasets can be found in (Palma & Martins, 2013).

Table R2/ 4 - Number of examples composing each dataset.
Dataset Bl B2 B3 B4 B5 B6 B7 B8 B9 B10
Train_O 4058 | 4060 | 4009 | 4076 | 3965 | 3887 | 3992 | 4093 | 3998 | 4004
Open | Test_O 1006 | 980 | 998 | 978 | 1003 | 983 |991 | 1001 | 953 | 987
Validation_O | 4956 | 4987 | 4992 | 5056 | 4961 | 4948 | 5016 | 5010 | 5061 | 4943
Train_C 3942 | 3940 | 3991 | 3924 | 4035 | 4113 | 4008 | 3907 | 4002 | 3996
Closed | Test_C 994 | 1020 | 1002 | 1022 | 997 | 1017 | 1009 | 999 | 1047 | 1013
Validation_C | 5044 | 5013 | 5008 | 4944 | 5039 | 5052 | 4984 | 4990 | 4939 | 5057

22.2 2.2 Case study 2

Case study 2 addresses a distinct IEEE RTS 24 system from case study 1. These two systems differ from the
position of breaker 3: in case study 2 the breaker 3 is positioned between buses 6 and 10 (whilst in case

study 1, breaker 3 was positioned between buses 5 and 10). The system for case study 2 is represented in

Figure R2/ 2.

LASCA Project — Final Report

57

Figure R2/ 2 - Case study 2 power system scheme, IEEE RTS 24, with identification of Breaker 11.

In this case study, Breaker 11 is the only one to be explored. This decision was made as Breaker 11 revealed

to be a remarkably difficult breaker concerning state estimation.

Information for empirical approach

The information to use under the empirical approach concerns the active and reactive power on flow [3-9]

(i.e. P_flow3-9 and Q_flow3-9).

Information for autoencoders with all variables

The information used under the general autoencoders approach includes P_inj3, Q_inj3, P_inj9, Q_inj9,
P_flow1-3, Q_flow1-3, P_flow3-24, Q_flow3-24, P_flow3-9, Q_flow3-9, P_flow4-9, Q_flow4-9, P_flow8-9,
Q_flow8-9, P_flow9-11, Q_flow9-11, P_flow9-12 and Q_flow9-12.

Therefore, the number of neurons integrating the input and output layers is 18, and for the hidden layer 13

neurons were considered.

Information for autoencoders without direct flows

The variables included within the implementation of autoencoders without information concerning the
respective flows are: P_inj3, Q_inj3, P_inj9, Q_inj9, P_flow1-3, Q_flow1-3, P_flow3-24, Q_flow3-24, P_flow3-9,

Q_flow3-9, P_flow4-9, Q_flow4-9, P_flow8-9, Q_flow8-9, P_flow9-11, Q_flow9-11, P_flow9-12 and Q_flow9-12.

LASCA Project — Final Report 58

Concerning the number of neurons, the input and output layers include 16 neurons each, and the hidden

layer 11 neurons.

23 3 Measuring performance in classification

The assessment of performance of classifiers is usually made by means of Receiver operating characteristics
(ROC) analysis. An elucidative guide to ROC analysis is provided in (Fawcett, 2006). The confusion matrix
includes information concerning true positives (TP), false positives (FP), false negatives (FN) and true
negatives (TN), as exemplified in Eq. R2/(1).

[TP FP]

Other important measures, which are calculable from confusion matrix, are Area Under ROC Curve (AUC),
precision, recall, accuracy and specificity. The detail on these measures is provided in expressions Eq. R2/(

2) to Eg. R2/(8).

P=TP+FN Eq. R2/(2)
N=FN+TN Eq. R2/(3)

Precision — TP
recision = TP + FP Eq. R2/(4)
TPrgte = recall = hit g, = 7 Eq. R2/(5)

FP
FPrgte = W Eq. R2/(6)
_ TP+ TN

accuracy = P+ N Eq. R2/(7)
specificity = FPTTN =1—FPrge Eq. R2/(8)

24 4 Topology estimation using empirical approach

The empirical approach described in this section refers to the procedure used in the field to estimate

whether a breaker is open or closed. This approach works with the establishment of thresholds for the

LASCA Project — Final Report 59

active and reactive power values observed in flows where breakers are allocated. This approach starts by
selecting minimum and maximum limits observed for the train dataset concerning reactive and active
power flows, these limits are selected considering only the examples where the breaker’s status was
“open”. Having these limits selected, each instance from the validation dataset is classified as “open” if its
reactive power flow value is within the respective limits and if its active power flow value is also within the

respective limits. Otherwise, the instance is classified as “closed”.

There are some variants of this main idea: i) consider the limits obtained with the inclusion of some delta;
ii) adopting of the value zero as a reference, consider the maximum absolute value observed to define the
variance, this way originating a symmetric interval (noting that the process firstly describe originate
asymmetric intervals). At this point, the process followed within the empirical approach is presented. Next
sections include the results obtained considering symmetric limits, asymmetric limits, both with and

without deltas.

24.1 4.1 Case Study 1

The results obtained with the empirical approach concerning the Breakers 1 to 10 are summarized in Table
R2/ 6. Breakers 1, 2, 4, 5, 6, 7 and 10 achieved an accuracy of 100.00%. The worst case was Breaker 9, for
which the best results obtained was of 11 fails in 10000 instances, corresponding to an accuracy of 99.89%.
For Breaker 3, the best result obtained was of 2 fails (accuracy of 99.98%), and for Breaker 8 the best result

was of 1 fail in 10000 instances (accuracy of 99.99%).

24.2 4.2 Case Study 2

Concerning Breaker 11, the results obtained are summarized in Table R2/ 5.

Table R2/ 5 - Results of empirical approach for Breaker 11.

Asymmetric empirical [Symmetric empirical

approach approach

Delta |TN (FP |FN|TP ([Delta [TN |FP |FN TP

-0.01 |665 (440 |0 |493 |-0.01 (134 |372 |0 |493
2 3 2 5 3

-0.005 458 (486 |2 |493 |-0.005(478 |282 |2 |493

LASCA Project — Final Report 60

- 505 |15 |6 |492 |- 505 |8 6 |492

0.000 |2 7 0.000 |9 7

5 5

0 506 |7 6 |492 |0 506 |4 6 |492
0 7 3 7

0.000 |506 |5 7 1492 |0.000 |506 |0 7 1492

0.005 |506 |0 11 {492 [0.005 506 (O 12 {492

0.01 |506 |0 29 1490 |0.01 |506 |0 31 1490

Using the empirical approach, the best result obtained for Breaker 11 was of 7 fails in 10000 instances,

corresponding to an accuracy of 99.93%.

25 5 Competitive autoencoders with all variables

This section includes the results obtained with the application of competitive autoencoders to estimate
breakers’ status in power systems. Different specifications of autoencoders’ parameters were tested. All
experiments considered the initialization of synaptic weights of 1*' half (W1) with PCA, the initialization of
synaptic weights of 2™ half (W2) with the transposition of weights from 1% half, the initialization of bias
with zeros, normalization using the min max by entrance. The normalization of synaptic weights using the
Oja’s rule was also tested (Oja, 1982; Palma & Martins, 2013). A detailed description on the meaning of
these specifications can be found in (Palma & Hora, 2012; Palma & Martins, 2013). Note that the
initialization adopted ensures the randomness independence of these autoencoders (meaning that a single

run ensures the results presented).

25.1 5.1 Case Study 1

The results obtained with the application of competitive autoencoders to estimate the state of Breakers 1

to 10 is summarized in Table R2/ 7.

LASCA Project — Final Report 61

Breakers 1, 2, 4, 5, 6, 7 and 10 achieved 100% of accuracy for at least one experiment. Breaker 9 revealed

to be the most difficult one, for which the best result obtained was out of 12 failures in 10000 instances

using PROP, corresponding to an accuracy of 99.88%. Using ITL autoencoders, the best accuracy found for

Breaker 9 was 99.82% (18 fails in 10000 instances).

Table R2/ 6 - Results of empirical approach for Breakers 1 to 10.

Assymmetric empirical approach Symmetric empirical approach
Delt -5.00E- 5.00E- -5.00E- 5.00E-
-0 |[-0.01 0 0.01 |0.01}]-0 |-0.01 0 0.01 |0.01
a 04 04 04 04
117 495 495 |173 495 495
TN 4607 |4950 4957 |4957 4758 |4956 4957 [4957
5 6 7 3 7 7
Breaker
378 322
1 FP 350 |7 1 0 0 0 199 |1 0 0 0 0
2 4
FN |0 0 0 0 0 0 0 0 0 0 0 0 0 0
504 504 504 |[504 504 504
TP 5044 (5044 5044 |5044 5044 (5044 5044 |5044
4 4 4 4 4 4
Delt -5.00E- -5.00E-
-0 [-0.01 0 0.0005 |0.01 |0.01}-0 |-0.01 0 0.0005 |0.01 |0.01
a 04 04
498 498 498 498
TN 662 |4512 |4980 4983 (4987 705 |4536 (4980 4983 (4987
2 7 3 7
Breaker
432 428
2 FP 475 |7 5 4 0 0 451 |7 4 4 0 0
5 2
FN |0 0 0 0 0 0 0 0 0 0 0 0 0 0
501 501 501 |501 501 501
TP 5013 (5013 5013 |5013 5013 (5013 5013 |5013
3 3 3 3 3 3
LASCA Project — Final Report 62

Delt -5.00E- -5.00E-
-0 |[-0.01 0 0.0005 |0.01 |0.01]-0 |-0.01 0 0.0005 |0.01 |0.01
a 04 04
498 499 |110 498 499
TN |853 |4571 |4985 4989 (4992 4653 |4986 4989 (4992
8 2 3 8 2
Breaker
413 388
3 FP 421 |7 4 3 0 0 339 |6 4 3 0 0
9 9
FN |O 2 2 2 2 2 3 0 2 2 2 2 2 3
500 500 500 [500 500 500
TP 5006 (5006 5006 |5006 5006 (5006 5006 |5006
8 6 5 8 6 5
Delt -5.00E- -5.00E-
-0 |[-0.01 0 0.0005 |0.01 |0.01]-0 |-0.01 0 0.0005 |0.01 |0.01
a 04 04
505 505 |155 505 505
TN [|995 |4673 |5048 5055 |5056 4822 |5053 5056 |5056
3 6 7 5 6
Breaker
406 349
4 FP 383 |8 3 1 0 0 234 |3 1 0 0 0
1 9
FN |O 0 0 0 0 0 0 0 0 0 0 0 0 0
494 494 494 494 494 494
TP 4944 14944 4944 (4944 4944 14944 4944 (4944
4 4 4 4 4 4
Delt -5.00E- -5.00E-
-0 |[-0.01 0 0.0005 |0.01 |0.01}-0 |-0.01 0 0.0005 |0.01 |0.01
a 04 04
Breaker 495 496 |144 496 496
TN |842 |4560 |4952 4957 (4961 4715 |4959 4960 (4961
5 6 1 4 0 1
411 351
FP 401 |9 5 4 0 0 246 |2 1 1 0 0
9 7
LASCA Project — Final Report 63

FN |O 0 0 0 0 0 0 0 0 0 0 0 0 0
503 503 503 |503 503 503
TP 5039 (5039 5039 |5039 5039 (5039 5039 |5039
9 9 9 9 9 9
Delt -5.00E- 5.00E- -5.00E- 5.00E-
-0 -0.01 0 0.01 |0.01}-0 -0.01 0 0.01 |0.01
a 04 04 04 04
494 494 112 494 494
TN 812 (4551 |4936 4944 4948 4600 |4940 4945 4948
1 8 9 3 8
Breaker
413 381
6 FP 397 |12 7 4 0 0 348 (8 5 3 0 0
6 9
FN |O 0 0 0 0 0 0 0 0 0 0 0 0 0
505 505 505 |505 505 505
TP 5052 (5052 5052 5052 5052 [5052 5052 5052
2 2 2 2 2 2
Delt -5.00E- -5.00E-
-0 -0.01 0 0.0005 |0.01 |0.01}-0 -0.01 0 0.0005 |0.01 |0.01
a 04 04
501 501 501 501
TN 266 (4356 |5004 5011 5016 522 14536 |5009 5014 5016
0 6 3 6
Breaker
475 449
7 FP 660 |12 6 5 0 0 480 |7 3 2 0 0
0 4
FN |O 0 0 0 0 0 0 0 0 0 0 0 0 0
498 498 498 1498 498 498
TP 4984 14984 4984 4984 4984 14984 4984 4984
4 4 4 |4 4 4
Delt -5.00E- -5.00E-
-0 -0.01 0 0.0005 |0.01 |0.01}-0 -0.01 0 0.0005 |0.01 |0.01
Breaker
a 04 04
8
TN |55 [4760 {5007 |50 [5009 |5010 (501 |185 [4802 5009 (500 {5009 {5010 (501
LASCA Project — Final Report 64

4 8 0 9 9 0
345 315
FP 250 |3 2 1 0 0 208 |1 1 1 0 0
6 1
FN |0 0 0 0 0 1 1 0 0 0 0 0 1 1
499 499 498 499 499 498
TP 4990 (4990 4990 (4989 4990 (4990 4990 (4989
0 0 9 0 0 9
Delt -5.00E- -5.00E-
-0 |-0.01 0 0.0005 (0.01 |0.01]-0 |-0.01 0 0.0005 (0.01 |0.01
a 04 04
505 506 |183 506 506
TN |875 (4637 (5054 5058 (5061 4884 (5060 5060 (5061
4 1 0 0 1
Breaker
418 323
9 FP 424 |7 7 3 0 0 177 |1 1 1 0 0
6 1
FN |O 1 7 8 8 14 121 |1 1 10 10 |10 15 (22
493 493 491 |493 492 491
TP 4938 (4932 4931 |4925 4938 (4929 4929 14924
9 1 8 8 9 7
Delt -5.00E- -5.00E-
-0 |-0.01 0 0.0005 (0.01 |0.01]-0 |-0.01 0 0.0005 (0.01 |0.01
a 04 04
494 494 126 494 494
TN |945 (4595 (4940 4942 4943 4677 (4940 4943 4943
0 3 0 0 3
Breaker
399 368
10 FP 348 |3 3 1 0 0 266 |3 3 0 0 0
8 3
FN |O 0 0 0 0 0 0 0 0 0 0 0 0 0
505 505 505 |505 505 505
TP 5057 |5057 5057 (5057 5057 |5057 5057 (5057
7 7 7 7 7 7
LASCA Project — Final Report 65

Table R2/ 7 - Number of fails obtained with competitive autoencoders using all variables for Breakers 1 to 10.

Activatio
W B B1
n Oja W2 (Bl (B2 (B3 (B4 B6|B7 (B8 (B9
1 5 0
functions
No 0 3 303 (0 |0 (O |O 311 |12 (1
Uel) Ul Prop 2 |197 |455 |2 |0 |0 |46 |586 (43 |0
Yes
9
117 |1 34 (1 |0 (0O |39 (114 |75 |1
Prop
Yes 6 >
Corr (45 |O 5 0O |0 |0 |2 430 |18 |39
Tan - Tan
212 |3 522 (0 |0 (O |O 675 (28 |1
Prop
No d
Corr (O 0 870 |0 [0 |0 (O 2 26 |0
611 {110 (112 |0 (O |0 |169 (307 (48 |0
Prop
5
Yes
101 |233 |111 |1 (O |O (O 6 47 |10
CS
Corr
1 2
Tan - Lin
253 (249 (487 |0 (0 |0 (26 (160 (31 |1
Prop
5 9
No
393 (0 411 |0 |0 |0 |512 |2 31 |5
Corr
5 4
6 195 1141 |0 (O |8 |9 162 |38 |1
Prop
8 3 7
Lin -Lin Yes
7 242 (97 |0 |0 |18(24 (670 |75 |1
Corr
8 8

LASCA Project — Final Report

2 201 1172 (0O (O (22|54 330 (65 |1
Prop

No

73 (171 (149 |32 |0 |43(25 (332 (93 |1
Corr

25.2 5.2 Case Study 2

Concerning Breaker 11, the results obtained are detailed in Table R2/ 8. The experiments here reported
differ from the ones reported in (Miranda et al., 2013) concerning the number of instances used to perform
the train of the autoencoders: in this study the we used approximately 4000 instances to train each
autoencoder and 1000 to assess overfitting, while in (Miranda et al., 2013) 1000 instances were used to
train each autoencoder and 500 to assess overfitting. Nevertheless, the 10000 instances composing the

validation dataset are the same.

Table R2/ 8 - Number of fails obtained with competitive autoencoders using all variables for Breaker 11.

Activatio
W
n Oja W2 ([B11
1
functions
288
No
Tan - lin Prop
1550
Yes
2862
Prop
Yes
2593
Corr
Tan - Tan
1093
Prop
No
1347
CS | Corr
1716
Prop
Yes
1904
Tan - Lin Corr
647
No Prop

LASCA Project — Final Report 67

442
Corr
242
Prop
Yes
17
Corr
Lin -Lin
572
Prop
No
11
Corr

The best result obtained corresponds to an accuracy of 99.89% (11 fails out of 10000 instances).
Nevertheless, the majority of experiments returned high values of fails, indicating that this breaker is a

difficult case to estimate.

26 6 Competitive autoencoders without direct flows

This section includes the results obtained by considering the competition of two autoencoders, each one
trained for a different status (i.e. one autoencoder is trained with instances referring to the status “open”,

and the other is trained to reproduce the “closed” status).

All experiments considered initialization of synaptic weights of 1** half (W1) with PCA, the initialization of
synaptic weights of 2™ half (W2) with the transposition of the synaptic weights of the 1% half. The
initialization of bias was always specified with zeros. This initialization process is completely independent
from randomness, from where one single run produces the results reported. Theoretical details concerning

these specifications are detailed in (Palma & Hora, 2012).

Ill

Concerning the tables further presented, the label “tan-lin” indicates that the activation functions used in

Ill

2" and 3™ layers were hyperbolic tangent and piecewise-linear, respectively; the label “tan-tan” indicates
that the hyperbolic tangent activation function was used on both 2™ and 3™ layers. The employment of
Qja’s rule (Oja, 1982; Palma & Martins, 2013) is shown with “yes”, and its absence with “no”, on the
respective line. The methods applied to train the synaptic weights of 1 (W1) and 2" halves of the
autoencoders are: maximization of entropy between two consecutive layers with estimators of Cauchy
Schwarz (CS), the minimization of correntropy between two consecutive layers (Corr) or the minimization
of mean squared error with backpropagation (PROP). The estimation of sigma was as proposed by

Silverman (Silverman, 1986). More details on the theory of these specifications are available at (Palma &

Hora, 2012; Palma & Martins, 2013).

LASCA Project — Final Report 68

26.1 6.1 Case study 1

The number of fails obtained for each breaker is detailed in Table R2/ 9.

Table R2/ 9 - Number of fails obtained with competitive autoencoders without direct flows for Breakers 1 to 10.

Breaker 1 2 3 4 5 6 7 8 9 10
Activation tan-lin /
tan-lin |tan-lin |tan-lin |tan-lin [tan-lin [tan-lin |tan-lin [tan-lin [tan-tan
functions tan-tan
Oja no yes yes no yes no/yes |no no no no
W1 CS CS CS CS CS CS CS CS CS CS
PROP /|PROP [/|PROP [/
W2 PROP [PROP PROP Corr PROP Corr PROP
Corr Corr Corr
Data Global |Entranc |Entranc |Entranc |Entranc |Entranc |Entranc |Entranc |Entranc |Entranc
normalizatio |minma |e e e e e e e e e
n X minmax |minmax [minmax [minmax [minmax |[minmax |minmax |minmax |minmax
Best no. fails |0 143 18 0 0 0 14 42 184 2

Breakers 1, 4, 5 and 6 returned 100.00% of accuracy. Once again, the state of Breaker 9 was the most

difficult to estimate, with an accuracy of 98.16%.

26.2 6.2 Case study 2

Concerning Breaker 11, the number of fails is presented in Table R2/ 10, alongside with some details
concerning the specifications used. For this case, the best accuracy found was of 98.41%, with 159 fails out

of 10000 instances.

Table R2/ 10 - Number of fails obtained with competitive autoencoders without direct flows for Breaker 11.

Breaker 11
Activation tan-lin
functions

LASCA Project — Final Report 69

Oja No

w1 CS

w2 PROP
Data Global
normalization minmax
Best no. fails 159

27 7 Discussion and Conclusions

The employment of the technique competitive autoencoders with all variables returned good results: 7
cases returned a performance of 100.00%, and the worst breaker returned a performance of 99.89%.
However, a significant gain cannot be concluded from these results when compared with the accuracy

achieved from the empirical approach.

The second approach tested, the use of competitive autoencoders without direct flows, represents a
significant gain, as it allows the breakers’ status estimation using only indirect information concerning the
respective breaker. Without information on direct flows, the empirical approach is unfeasible. Impressively,
this approach achieved 100.00% of accuracy for 4 breakers, having the worst breaker returned an accuracy

of 98.16%.

28 Bibliography

Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27, 861-874.

IEEE RTS Task Force of APM Subcommittee. (1979). IEEE Reliability Test System. IEEE Transactions on
PAS, 98(6), 2047-2054.

Krstulovic, J., Miranda, V., Costa, A. J. A. S., & Pereira,]J. (2013). Towards an auto-associative topology
state estimator. IEEE Transactions on Power Systems, 28(3), 3311 - 3318

Miranda, V., Krstulovic, J., Hora, J.,, Palma, V., & Principe,]. C. (2013). Breaker status uncovered by
autoencoders under unsupervised maximum mutual information training. Paper presented at the ISAP
2013, Japan.

Miranda, V., Krstulovic, J., Keko, H., Moreira, C., & Pereira,]. (2012). Reconstructing Missing Data in
State Estimation With Autoencoders. IEEE Transactions on Power Systems, 27(2), 604-611.

Oja, E. (1982). A Simplified Neuron Model as a Principal Component Analyser. Journal of Mathematical
Biology, 15(3), 267-273.

LASCA Project — Final Report 70

Palma, V., & Hora,]. (2012). Theoretical Concepts of ITL Neural Networks INESC Interim Report. Porto,
Portugal.

Palma, V., & Martins, J. H. (2012). Theoretical Concepts of BackPropagation Neural Networks INESC
Interim Report. Porto, Portugal: INESC TEC.

Palma, V., & Martins, J. H. (2013). Training Neural Networks - Theory of Practical Issues INESC Interim
Report. Porto, Portugal: INESC TEC.

Silverman, B. W. (1986). Density Estimation for Statistics and Data Analysis. London, UK: Chapman &
Hall/CRC.

LASCA Project — Final Report 71

PTDC/EEA-EEL/104278/2008

29 Abstract

This study is conducted under the context of unsupervised training of neural networks with two layers,
using the concepts of information theory to perform the training. The two criteria here addressed are: i)
maximizing the entropy of the outputs (MaxEnt) and ii) maximization the mutual information between the
inputs and outputs (MaxMI). The research question pursued is “are these two approaches equivalent?”.
With base on the existing literature, it is possible to conclude that the two approaches are theoretically

equivalent provided the system is noiseless.

30 1 Introduction

Let us consider a neural network composed of two layers. The first layer, the input, is represented by X.
The second layer, the output layer, is represented by Y. The number of neurons composing each layer is
arbitrary, and we assume the general case where the two layers are composed with a distinct number of

neurons. Figure 1 includes a schematic of the neural network considered.

M

- /
ITL methods (unsupervised)

Figure R3/ 1 — Schematic representation of the first half of an autoencoder to be trained with ITL criteria.

LASCA Project — Final Report 72

The neural network is to be trained following an unsupervised approach using one information criterion. In
this study we consider two information criteria: the first is the maximization of the mutual information
between the first and the second layer I(X,Y). The second information criterion is the maximization of the

entropy of the outputs H(X).

The study intends to study whether the two criteria are equivalent to train the neural network. The case of
applying Shannon estimators is explored in the section 2. The quadratic information of Renyi is explored in
section 3. Theoretical comparisons on particular aspects concerning the definitions of Mutual Information
by Shannon and by Renyi are presented at section 4, and concerning the definitions of Entropy at section 5.

The discussion and conclusions are presented at section 6.

31 2 Shannon estimators

The mutual information between the inputs and outputs is related with the entropy of the outputs

considering the following expressions (Cover & Thomas, 1991):
Is(X,Y) = Hg(X) + He(Y) — Hs(X, Y)
Is(X,Y) = Hs(Y) — Hs(Y|X)

To compare the unsupervised training criterion of maximizing H(Y) with the criterion of maximizing
1(X,Y), the derivatives of both concerning the weights are to be studied. The study conducted by (Bell &
Sejnowski, 1995) addresses this question concerning the maximization of the “differential” entropy, which
is the entropy described by Shannon, and proves that maximizing Shannon entropy is equivalent of

maximizing the mutual information between the inputs and outputs.

0Is(X,Y) B 0Hs(Y) 0Hs(Y[X)
ow ow ow

dIs(X,Y) _ J0Hg(Y)
ow ow

Bell and Sejnowski state that, whatever the level of additive noise in the neural network, both approaches
(MaxEnt and MaxMI) are equivalent. This equivalence is explained by the fact that the conditional entropy

is independent of the weights (Bell & Sejnowski, 1995).

LASCA Project — Final Report 73

32 3 Renyi’s Information estimators

When applying the estimators of Renyi’s with @ = 2, the relationship between mutual information and

entropy is as follows:
L(X,Y) = Hy(X) + Hp(Y) — H(X,Y)
L(X,Y) = Hy(Y) — Hy(Y]X)
Now let us consider the derivatives of the mutual information of quadratic Renyi:

al,(X,Y) B 0H,(Y) O0H,(Y|X)
ow T ow ow

0H,(Y|X)
ow

The two criteria (MaxEnt and MaxMl) would be equivalent if the derivative is null.

32.1 3.1 Renyi’s Equivalence?

As viewed in section 3, the derivative of Renyi’s Mutual information is given by

d(X.Y) _ 9Hp(Y) dHp(Y|X)
aw aw ow

. The aim is state if the equivalence of MaxEnt and MaxMlI, for Renyi’s concepts

of Information Theory, maintain or not. According to (Haykin S. , 1999, p. 515), Hs(Y|X) conveys
information about the processing noise, rather than about the system input X. Haykin (Haykin, 1999, pp.
521-525) presents three examples of neural networks: i) a NN with a single noisy neuron at output, ii) a NN

with a single output corrupted by additive input noisy neurons and iii) a noiseless NN. For the noisy

OHy (Y]X)

networks: # 0. So, the equivalence is not verified. For noiseless networks, as explained in the third

dIs(X,Y) _ 0Hs(Y)
ow T ow

0Hg(Y|X)
ow

example, , meaning that = 0. This reasoning is also applicable for entropy as

defined by Renyi, in particular for the quadratic H,(Y|X).

33 4 Comparing Shannon and Renyi’s definitions of Mutual Information

The study (Hild I, Erdogmus, Torkkola, & Principe, 2006) includes the following relationship between

Shannon and Renyi’s quadratic mutual information:
I(X,Y) = Hy(Y) - H,(Y|X) = L(X,Y)

This expression means that the mutual information as described by Shannon is approximately equal to the
mutual information as described by Renyi with @ = 2. Moreover, according to (Hild Il et al., 2006, p. 1387),

there is no evidence that maximizing the mutual information using the quadratic Renyi’s definition would

LASCA Project — Final Report 74

be equivalent to maximize the mutual information using the Shannon’s definition. As one identity assumes
distinct quantities using L1 and L2, the same reasoning is applicable to information quantities (Shannon and

Renyi’s quadratic mutual information).

34 5 Comparing Shannon and Renyi’s estimators for Entropy

In the thesis (Erdogmus, 2002, p. 122), it is shown that for a particular pattern y; , the derivative of the

Shannon entropy estimator is equivalent to the derivative of the quadratic entropy of Renyi estimator:

0Hs, (Y) _ 0H, . (Y)
ow ow

However, this conclusion cannot be extended to a training set composed of two or more patterns. The
following two equations show that the derivatives of Shannon entropy and Renyi’s entropy estimators are
different when considering two or more patterns. These equations can be found in the study (Erdogmus,

Hild, Principe, Lazaro, & Santamaria, 2004, p. 1490).

9l (Y) _ 1i2%=1 ke (Vj — ¥i) (a_vd - a_}vlvl>
ow L Y ke (j — i)

9H,(Y) B E?:l Yiot Ke(¥j = ¥i) (6_\/; - a_‘};;)
ow 25:212%:1 Kcr(yj _yi)

35 6 Discussion and Conclusions

When using estimators of entropy, it is equivalent maximizing the mutual information between the inputs
and outputs and maximizing the entropy of the output, when performing unsupervised training of a

noiseless neural network.

This study also included some insights concerning the comparison between Shannon and Renyi’s definitions

of Mutual Information and the comparison between Shannon and Renyi’s estimators for Entropy.

36 Bibliography
Bell, A., & Sejnowski, T. (1995). An Information-maximization approach to blind separation and blind

deconvolution. Neural Computation, 7, 1129-1159.

Cover, T, & Thomas,]J. (1991). Entropy, Relative Entropy and Mutual Information Elements of
Information Theory (pp. 20): John Wiley & Sons.

LASCA Project — Final Report 75

Erdogmus, D. (2002). Information Theoretic Learning: Renyi's Entropy and Its Applications to
Adaptive System Training.

Erdogmus, D., Hild, K. E.,, Principe,]J. C, Lazaro, M. & Santamaria, I. (2004). Adaptive blind
deconvolution of linear channels using Renyi's entropy with Parzen window estimation. IEEE
Transactions on Signal Processing, 52(6), 1489-1498.

Haykin, S. (1999). Neural Networks - A Comprehensive Foundation (2nd ed.). Ontario, Canada: Pearson
Education.

Hild II, K., Erdogmus, D., Torkkola, K., & Principe,]. C. (2006). Feature Extraction Using Information-
Theoretic Learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28, 1385-1392.

LASCA Project — Final Report 76

Training Neural Networks - Theory of Practical Issues

PTDC/EEA-EEL/104278/2008

Report LASCA / R4

37 Abstract

Through the work conducted concerning the implementation of neural networks, some theoretical issues
emerged. This work arises from the need to explore these issues, covering the main topics grounding the
learning process and data processing. A review is provided on adequate methods of data normalization,
synaptic weights normalization and initialization, window width estimation, activation functions selection,

saturation and overfitting prevention and calibration of other parameters.

38 1 Introduction

The implementation of neural networks is a complex task, composed of many sub-tasks whose accuracy
needs to be ensured. These sub-tasks include the data normalization procedure adopted, the choice on the
number of hidden neurons, the selection of appropriate activation functions, the estimation of the window
width, among many others topics. The need to accurately treat each one of these sub-tasks motivated the
review on the adequate methods proposed in literature. This paper summarizes the review conducted and

includes the specifications adopted in the neural networks implemented for each topic.

The report is organized as follows. Section 2 provides general contextualization of neural networks, and
section 3 introduces the autoassociative neural networks. Section 4 discusses the batch and incremental
learning approaches. Section 5 includes the description of the Gradient Method. Section 6 includes the
parallel between supervised and unsupervised training. Section 7 explores aspects concerning the data sets
used to train, test and validate the neural networks, alongside with the appropriate statistical tests to
assess the populations' similarity over the same data sets. Section 8 focuses on the adequate number of
instances to train a specified neural network. Section 9 reviews the methods to perform the normalization
of data employed. The selection of the number of hidden neurons is explored in Section 10. Section 11

explains how to use the principal component analysis procedure to initialize the synaptic weights. In

LASCA Project — Final Report 77

Section 12 details the normalization of synaptic weights during the entire training process. Section 13
includes a detailed description on widely used activation functions and their corresponding derivatives.
Section 14 includes theoretical aspects concerning the stable learning rate. The adaptive learning rate
process is detailed in Section 15. Section 16 threats the estimation of the window width, and Section 17 the
adaptive window width process. Section 18 details how to prevent the saturation of synaptic weights

during the training. Section 19 details the prevention of overfitting.

39 2 Artificial Neural Network

An Artificial Neural Network, commonly referred to as Neural Network (NN), is a machine designed to
model the way human brain performs / learns a particular task or function of interest (Haykin, 1999). A NN
corresponds to a connectionist paradigm of information processing, including a massive parallel process of
numerical computations (Miranda, 2007), through a process of learning. The basic processing element of a
NN is the neuron (J. Principe, Euliano, & Lefebvre, 2000). Neurons are composed of several inputs, one
output and an activation function which executes the internal processing, transforming the inputs into the
output. Usually, neurons are organized in layers with unidirectional links always in a forward direction, from
the input to the output of the NN (feedforward networks). A “full connected network” means that each
neuron from one layer is connected to every neuron into the next layer. The connections between neurons

are designated as synapsis.

Bias
s bk
*1
Activation
x function
;nputﬁ | o) b Qutput
signals Yk
junction
xm
\- -
Synaptic
weights

Figure R4/ 1- Nonlinear Model of a Neuron, from (Haykin S. , Neural Networks - A Comprehensive Foundation, 1999).

Each synapsis is associated with a synaptic weight w;;, such that a signal emitted by a neuron is multiplied
by the weight of the connection before entering a next neuron (Miranda, 2007). The bias by, is an external

parameter that allows to shift the entire curve obtained from the activation function to the left (when bias

LASCA Project — Final Report 78

is positive) or right (negative bias), which may be critical for successful learning (Haykin, 1999). This process

is schematized in Figure R4/ 1. The equations behind the figure are:

m
Uy = z Wi jXj eq. R4/(1)
j=1
Vi = Uy + by eq. R4/(2)
Vi = (Vi) eq. R4/(3)

Equation eq. R4/(1) is the weighted sum of inputs. Equation eq. R4/(2) is summing the bias bj, to the uy.
Finally, the output y, emitted by a neuron is the result of v, through activation function @(+). When the
input layer is intended to match the output layer, the NN is called an autoencoder; when the desired

output differs from the input the NN is called heteroencoder.

40 3 Autoencoder

Auto-associative neural networks or autoencoders are feedforward networks that are trained to
mirror/reproduce the input space S in the output (Miranda, Krstulovic, Keko, Moreira, & Pereira, 2012).
Autoencoders define a reverse mapping consisting of a function f and its inverse f~1 (Figure R4/ 2)
allowing to map a space of dimension m into a space of dimension n (with n < m) and to reconstruct the

original variables (Costa, 2008).

Figure R4/ 2 - Schematic representation of an autoencoder of three layers.

In general, for any NN, it is usual to call “bottleneck” to the smallest (with lowest number of neurons)
hidden layer, in the case the NN is compressing information. The information contained in the entire input

space is projected onto the smaller layer (with lower dimension than the input layer).

LASCA Project — Final Report 79

41 4 Batch versus Incremental

Through learning, the weights of the NN are adapted to learn from its environment. The environment
consists of a number of given examples - the training set. The type of learning is determined by manner in
which the parameter changes take place. One of the most popular ways of learning with the training set is
the batch mode learning. This method consists on first average the learning rule over all P training

examples before changing the weights and bias (Haykin, 1999; Heskes & Wiegerinck, 1996).

In fact, the batch method computes the weights and bias updates for each input sample and store these
values (without changing the weights) during one pass through the training set, which is called an epoch. At
the end of each epoch, all the weights/bias updates are added together, and only then will the weights be
updated with the composite value. This method adapts the weights with a cumulative weights update (J.

Principe et al., 2000).

Another learning strategy is the incremental learning. At this learning method a pattern is presented to the
network and the weights are updated before next pattern is considered. On-line learning is a type of
incremental strategy (Heskes & Wiegerinck, 1996). Batch-mode learning is completely deterministic while
incremental learning strategies are stochastic due to the arbitrariness on the order by which the patterns
are presented. The batch-mode requires additional storage for each weight which implies a heavier

demand of memory in comparison with the incremental mode.

42 5 Gradient Method

The problem of learning in NN has been formulated in terms of the optimization of a cost
function/performance index F. This cost function/performance index is a function of the adaptive
parameters (synaptic weights and biases) in the network. The problem of optimizing functions of many
variables has been widely studied, and is directly applicable to the training of neural networks. Several of
the most important practical algorithms to train NN can be found in (Bishop, 1995) and (Hagan, Demuth, &
Beale, 1996) (Chapter 7 and Chapter 9, respectively). One of the simplest of these is Gradient Method
(GM), sometimes also known as Steepest Descent (for the minimization context) or as Steepest Ascent (for
the maximization context) (Miranda, 2007). The GM is an iterative algorithm. Giving a differentiable
function F(x), with n-dim vector X, the iterative process starts from some initial guess, x°, and then

updates the guess value in stages according to:

x"eW = x +n VF eq. R4/(4)

LASCA Project — Final Report 80

This means that each component x;;°" comes:

0xy old eq. R4/(5)
k

The parameter n corresponds to the iteration step and will be positive for maximizing and negative for

minimizing. Gradient Descent can be seen in more detail at (Bishop, 1995) (Chapter 7, Section 7.5).

43 6 Supervised and Unsupervised Training

One of the classifications in NN is the one according to the teacher/target existence in learning process. In
that way, NN can be classified in supervised (with teacher) or unsupervised (without teacher) (Haykin,
1999). In supervised learning, a desired response (target value) is available indicating, e.g., the amount of
error (difference between the desired response and the actual response) in system performance. This is in
contrast with unsupervised learning, where no teacher is available (Kishan, Mohan, & Ranka, 1996), i.e.,
there is no a priori output. To perform unsupervised learning a competitive learning rule may be use. In

fact, different algorithms for unsupervised learning rule can be seen in (Haykin, 1999) (Chapter 8).

44 7 Train, Test and Validation Set

The data set is usually divided in two (train and test) or three (train, test and validation) sets. This work
considered a division in three parts: train, test and validation. The training dataset is applied to build up the
model adjusting the weights of the NN, the test dataset is applied during the NN training in order to
prevent overfitting, finally, the validation dataset is applied after the train of the NN to validate the model

built and to determine how well the predictive model generalizes.

The number of examples to include in each dataset is not consensual in literature. Some dataset divisions
suggested in literature are i) 50% + 25% + 25%; ii) 70% + 10% + 20% or iii) 40% + 30% + 30%. This work
adopted the division 50% + 25% + 25%, with 1000 (50%), 500 (25%) and 500 (25%) examples.

Another important topic is to ensure that the datasets of train, test and validation belong to the same
population. A statistical analysis applying the statistical tests Smirnov and Cramer-Von-Mises was applied,

as detailed in (Hora & Palma, 2012).

LASCA Project — Final Report 81

45 8 Size of Training Set

Another topic, related with above section, is how to fix a good size, N, for the training set. Again no fixed
rule exists for this question. In this case, a rule of thumb can be used and states that N = 10 * weights (J.

Principe et al., 2000, p. 199). In our case, with a network [24 — 12 — 24], we have:

N =~ 10 * weights eq. R4/(6)
S N=10x*(2%24%12) eq.R4/(7)
< N = 5760 eq. R4/(8)

However, in this work our available data consist on only 1000 patterns.

46 9 Data Normalization

Normalization is a NN pre-processing that as a high importance on training NN to obtain good results and
reduce significantly the calculation time (Sola & Sevilla, 1997). Normalization is often useful if different
variables have typical values which are on widely different scales/differ by several orders of magnitude.
Applying a linear transform, inputs are arranged to have similar values. This transformation can be applied
to each variable independently (Bishop, 1995; Jayalakshmi & Santhakumaran, 2011) - Normalization by
Entrance or can be applied considering all data - Global Normalization. At the same time, there are
different techniques to perform data normalization (Bishop, 1995; Jayalakshmi & Santhakumaran, 2011;

Kim, 1999). The ones chosen for this work were the MinMax and Z-Score Normalization.

MinMax Normalization

n .
n X[—ming,

X = -
max;, — min;,

- (max;, —min;) + min; , eq. R4/(9)

Where x[* and %{* are the raw input data and the input data normalized, respectively ; max; ,and min; ,
are the maximum and minimum for the original input variable i (Entrance), respectively; max; ,and min; ,,
are the new range of input variable i. As hyperbolic tangent (tanh) is the chosen activation function than
max; , = 1and min;, = —1 (Kim, 1999) and eq. R4/(9) becomes:

P L o min.
n 27x; —max;, —min;,

i — max; , — mini,o eq. R4/(10)

=N

LASCA Project — Final Report 82

A similar result arises to global normalization:

n _ 2°x]'—max, —min,

X

max, — min, eq. R4/(11)

Where max, and min, are the global maximum and minimum for original data.

This type of normalization was chosen instead other (e.g., Z-Score) because data set is a regular set without

outliers.

Statistical or Z-Score Normalization

As input variables, x;* from training set, are treat independently (Entrance), the variance and mean

calculation are done for each of them:

N
X = l x
Y i eq. R4/(12)
=1
1 N
of = mZ(xin - %;)? eq. R4/(13)
i=

Where n = 1,..., N labels the instances. Using these statistical concepts, a re-scaled set of variables are

define as (Bishop, 1995):

X = : eq. R4/(14)

A similar result derives for global issue computing the mean and standard deviation over all train set.

The advantage of this type of norm (Z-Score) is that it reduces the effects of outliers in the data (Bishop,

1995; El-Sharkawi, 1995; Jayalakshmi & Santhakumaran, 2011).

47 10 Number of Hidden Neurons (NHN)

The input and output number of neurons are determined by the number of available inputs and required
outputs respectively. The only thing remaining is how to determine the number of neurons in the hidden
layer. It is important to note that using too few hidden neurons will result in under fitting while too many
hidden neurons may result in over fitting (Panchal, Ganatra, Kosta, & Panchal, 2011; J. Principe et al., 2000,

p. 143). In fact, the best number of hidden units depends on many factors, e.g., the number of input and

LASCA Project — Final Report 83

output units, the number of training cases, the complexity of cost function, the type of activation function,
the training algorithm, among other (Panchal et al., 2011). Some books and articles® offer rules of thumb for

choosing an architecture, however these rules do not consider, e.g., the number of training cases.

An interesting behaviour according to the NHN was shown by El-Sharkawi (El-Sharkawi, 1995) in next
figure, which shows the comparative cross validation among two or more NN as a method of determining
the NHN. El-Sharkawi concludes that the best range for NN should be chosen in range where the error of
the NN is relatively unchanged. Ultimately, the selection of NHN can be done by trial and error (Panchal et

al., 2011).

\

Error

—

of Hidden Neurons

Figure R4/ 3 - NN Error versus NHN, from (El-Sharkawi, 1995).

48 11 Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is a mathematical procedure that uses an orthogonal transformation to
convert a set of observations of possibly correlated variables into a set of values of linearly uncorrelated
variables called principal components. The new components are chosen in such way that the first new
component has maximum variance, the second new component has maximum variance subject to being
uncorrelated with the first one, and so forth. PCA can be done by eigenvalue decomposition of a data
covariance matrix or singular value decomposition of a data matrix, usually after normalizing the data

matrix (Mohamad-Saleh & Hoyle, 2008).

! NOTE: Bibliography extracted from http://www.fags.org/fags/ai-fag/neural-nets/part3/section-10.html
e Blum, A. (1992), Neural Networks in C++: An Object-Oriented Framework for Building Connectionist Systems,
NY: Wiley, p. 60.
e Swingler, K. (1996), Applying Neural Networks: A Practical Guide, London: Academic Press, p. 53.
e Berry, M.J.A,, and Linoff, G. (1997), Data Mining Techniques, NY: John Wiley & Sons, p. 323.
e Boger, Z., and Guterman, H. (1997), "Knowledge extraction from artificial neural network models," IEEE
Systems, Man, and Cybernetics Conference, Orlando, FL.

LASCA Project — Final Report 84

In that way, PCA technique projects the data into a linear subspace with intended minimum information
loss, by multiplying the data by the eigenvectors of the sample covariance matrix. A point is then

represented by its coordinates along the directions of greatest variance in the data set (Costa, 2008).

To our work, as we have a fixed number of hidden neurons (13 neurons), the thirteen eigenvectors
corresponding to the highest eigenvalues were chosen. In fact, we are able to chosen at maximum Dimin
eigenvectors. At code we use a function from Armadillo (C++ linear algebra library): Princomp function -
that performs a principal component analysis of matrix X, where each row of X is an observation and each

column is a variable. The computation is based on singular value decomposition.

First Half of AA: Weights and Bias Initialization

Bias and weights initialization can be done by two different processes. For weights these two processes
change between random or PCA. And for Bias the processes are: random or zeros. If PCA is chosen it is
natural that for Bias the zeros initialization is chosen instead random option. In fact, as PCA is a good
optimal start point, should not be added more options, what leads to choose a zeros Bias initialization. So,

this should be the optimal starting point for Bias when PCA is preferred.

Second Half of AA: Weights and Bias Initialization

As the first half of the neural network approximates the function f and the second half approximates the
inverse function f~1, it is natural that a good initialization for weights of second half of autoenconder be

the transpose of final weights obtained for the first half.

T
Wand hatr = (Wast naty) eq. R4/(15)

The method for the Bias initialization of second part can be chosen between random or zeros.

49 12 Stability - Oja's Rule (Weights Normalization)

Qja's learning rule (named from Erkki Oja) is a model of how neurons in the brain or in artificial neural
networks change connection strength, or learn, over time. Hebbian update rule is unstable since the
weights grow without bound (J. Principe et al., 2000). Oja's Rule is a modification of the standard Hebb's
Rule that, through multiplicative weights normalization, solves all stability problems. Hebbian learning

updates the weights according to:

wn+1) =whn)+nx(n)ymn) eq. R4/(16)

LASCA Project — Final Report 85

Where n is the iteration number and 7 a step size. Considering the simplest normalization, proposed by Oja
(Oja, 1982), the new value of the weight become:
wi(n) +n ym)x;(n)

wiln+1) = eq. R4/(17)

\/Zi(Wi(n) + 1 y(m)x;(n))?

Oja proposed an approximated update of (Oja, 1982):

wi(n+1) = w;(n) + 1 y@)(x;(n) — y(m)w;(n))
eq. R4/(18)
=w;(M[1 —ny*(m)] +nx;(n) y(n)

producing the Oja's rule.

One of the objectives of our work included the networks competition: two networks were trained, one with
train data set for type 1 and other with train data from type 2. Then, the objective is passing through two
networks the validation set with general data from type 1 and type 2. The network that gives the lowest
error for each example decides the type of that example. For a fair competition, the errors should
correspond to the same magnitude. Normalization from Oja's Rule provides a way to achieve this. Our code
implements this normalization proposed by Oja, while the learning process is occurring. The weights
normalization is done by column, includes the bias normalization and is processed for the first and second

half of AA.

Relating Oja's Rule with PCA

Oja's Rule derived as a limit process from an earlier well-known formulation of the Hebbian-type
modification, leads to a behaviour where the unit is able to extract from its input a statistical technique
known as principal component analysis (Oja, 1982). A detailed explanation on the correspondence between
Oja's Rule and PCA is provided by (J. Principe et al., 2000, p. 294): "Hebbian learning finds the direction
where the input data has the largest projection. But the weight vectors grow without limit. With Oja's rule
we found a way to normalize the weight vector to 1. We should expect that this normalization would not
change the geometric picture developed for the Hebbian network. In fact, it is possible to conclude that
training the linear processing element (neuron) with Oja's algorithm produces a weight vector that is the

eigenvector of the input autocorrelation matrix, and produces at its output the largest eigenvalue."

LASCA Project — Final Report 86

50 13 Activation function

Activation function, ¢(-) at Equation Error! Reference source not found., also called Transfer Function, is
used for limiting the amplitude of the output of a neuron (typically [0,1] or [—1, 1]). Linear, Piecewise-
Linear (Haykin, 1999, pp. 35-36) / Symmetric Saturating Linear (Hagan et al., 1996), Logistic and Hyperbolic
Tangent functions are some examples of activation functions. More functions can be explored at (Hagan et
al., 1996, pp. 2-6). Next equations refer to those activations functions that were implemented in our code

and their derivatives (Haykin, 1999, p. 190):
Linear
The simple linear function is defined as:
o) =u eq. R4/(19)

Figure R4/ 3 illustrates this function:

Figure R4/ 4 - Linear Transfer Function, from (Demuth & Beale, 2002).

The correspondent derivative is:
p'(w) =1 eq. R4/(20)

Symmetric Saturating Linear

Next equation corresponds to the symmetric saturating linear function (or Piecewise-Linear), described in

Figure R4/ 5:
-1, u<-1
oM :{ u —-1<u<l1 eq. R4/(21)
1, u>1
a

Figure R4/ 5 - Symmetric Saturating Linear Transfer Function, from (Demuth & Beale, 2002).

LASCA Project — Final Report 87

This function avoids saturation unlike simple linear function. The correspondent derivative of this function

(Demuth & Beale, 2002) is:

1, -1<uc<l1

¢'(u) = {0, otherwise eq. R4/(22)
Logistic
Logistic sigmoid transfer function is defined as:
pu) =——7 eq. R4/(23)
1+e a

Where a is the activation function flatness that defines the slope of this function. Next figure describes this

function:

Figure R4/ 6 - Logistic Sigmoid Transfer Function, from (Demuth & Beale, 2002).

The correspondent derivative is:

u
| e a
Yw=—— eq. R4/(24)

Letbe y = ¢@(u). Then (Haykin, 1999, p. 190),

, 1
o'(u) = P y(1-y) eq. R4/(25)
This equality derives from:

y(1—y) =pW(1-e)

eq. R4/(26)

LASCA Project — Final Report 88

Resuming,
1
o' =~ p(1-pw)

Hyperbolic Tangent

The Hyperbolic Tangent function can be defined by:

or

eu/a _ e—u/a u
o) = Yy tanh (E)

eq. R4/(27)

eq. R4/(28)

eq. R4/(29)

The slope of this function is defined by a, called activation function flatness. Next figure illustrates the

function.

Figure R4/ 7 - Hyperbolic Tangent Function, from (Demuth & Beale, 2002).

Proof of equivalence between eq. R4/(28) and (29):

tanh(u) = sinh(u)
anii) = cosh(u)
el — U
_ 2
et + et
2

LASCA Project — Final Report

£

eq. R4/(30)

89

et —e™t
S evtet

1—e 2
T 1te

2-1-e
 l+e

STyem !

So,

u
@(u) = tanh (%) eq. R4/(31)

The correspondent derivative is:

p'(u) = <tanh (;—a)>
= % <1 — tanh? (zla)) eq. R4/(32)

1
=—-(1—¢?

= (1-¢*W)
Remember that,

d tanh(x) = d senh(x)
dx anh(x) = dx cosh(x)

B senh’(x) cosh(x) — senh(x)cosh’(x)
- cosh?(x)

_cosh?(x) — senh?(x)
- cosh?(x)

eq. R4/(33)

senh?(x)
cosh?(x)

=1 — tanh?®(x)

LASCA Project — Final Report 90

51 14 Stable Learning Rate

Learning rate is the parameter n at Equation Error! Reference source not found.. When this parameter is
large learning occurs quickly, but if it is too large it may lead to instability and errors may even increase
(Demuth & Beale, 2002). To ensure stable learning, the learning rate coefficient should respect a threshold.
Next Equation Error! Reference source not found. states the maximum allowed stable learning rate for
quadratic functions as inversely proportional to the largest eigenvalue, 4,4, Of Hessian matrix (Hagan et

al., 1996):

2

n< eq. R4/(34)

Amax

A detailed overview on this topic is provided by (Hagan et al., 1996, p. 9.6).

Hagan (Hagan et al., 1996, p. 10.10) and Principe (J. C. Principe, 2010, p. 27) provide an equivalent result
(eq. R4/35)) for LMS algorithm, but now using the eigenvalues, A',,,x, of the input correlation matrix (recall
that HessianMatrix = 2 * CorrelationMatrix).

1
n< T eq. R4/(35)

Other way to fix the maximum stable learning rate was provided by Principe (meeting at 04/07/2012).
According to him, to ensure stable learning, the learning rate must be less than the reciprocal of two times

the largest eigenvalue of the correlation matrix of the input vectors (eq. R4/(36).

1
n=so— — :
2% X max eq. R4/(36)

Maximum stable learning rate was implemented in our code according to this equation.

52 15 Adaptive Learning Rate

There are two general methods to determine the learning coefficient: minimize the cost function
performance with respect to learning rate at each iteration or predetermine a value for the learning rate. It
is not practical to determine the optimal setting for the learning rate before training, and, in fact, the
optimal learning rate changes during the training process, as the algorithm moves across the performance
surface. The performance of the steepest descent algorithm can be improved if we allow the learning rate

to change during the training process. An adaptive learning rate will attempt to keep the learning step size

LASCA Project — Final Report 91

as large as possible while keeping learning stable (Demuth & Beale, 2002). According to (Haykin, 1999, p.
213), an adaptive learning rate was implemented in all autoencoders. The rules used to define the adaptive

learning evolution are the ones define in (Hagan et al., 1996, p. 12.12).

53 16 Parzen Window Width - Silverman Rule

Information Theory concepts are based on probability density functions that are often hard to obtain. The
Parzen window method is a non-parametric method to estimate these probability density functions. The
method involves placing a kernel function on top of each sample and evaluating the density as a sum of

kernels. A Gaussian kernel in d-dimensional space is defined as (Torkkola, 2003):

G(x,2) = . { 1 Ty-1 }
(x,)—(Zn)% |2|% exp x x eq. R/(37)

Chose an appropriate window size for eq. R4/(37) is not easy (Jenssen, Principe, Erdogmus, & Eltoft, 2006).
However the Silverman's Rule gives us optimal window size estimation (Silverman, 1986, p. 87), for the

multivariate normal case:

Oopt = 0 hopt

= 5+ A(k) - n @D

eq. R4/(38)
1
4 (a+4) __1
=§&- { } -n @D
(d+2)
Where 62 is the average marginal variance:
~2 _ g-1, 2
6°=d z Oii eq. R4/(39)

d is the dimension, in our case is the hidden vector dimension and n is the size of train set. In our code we
used as a base value this optimal estimation of a. Other values, based on a percentage of this value, were

explored.

LASCA Project — Final Report 92

54 17 Adaptive Sigma, o (2nd half of AA)

In first half of autoencoder, the o parameter was calculated based on Silverman's Rule and set unmodified
over all epochs, as the learning process following ITL concepts is a heavy process. The training of second
half can be chosen between propagation, CIM (correntropy induced metric) and Corr (only correntropy). To
implement the last two options a kernel width parameter, g, should be defined. For this, code

implementation comprises an adaptive ¢ algorithm according to the update rule (Singh & Principe, 2010):

_ e, —e;)? e, —e)* 1
?=T:lL—L exp (_ (nzaz l)) . ((n — L) _ U_)
n n n
On+1 = 0p T 7 (en — ¢))? eq. R4/(40)
‘{'l_—l exp (_ n L)
l i=n—L 202 J

Where g,,,1 is the new value of a; g, is the old value of g, given by Silverman's rule; 1 is the learning step
set equal to 0.5; L is the window size, i.e., defines how many old ¢ values influence the calculation of actual
o and e; is the component i of error vector, of dimension L + 1, that holds the L oldest errors plus the
actual one. L was set equal to 4. A detailed description of the training methods referred above is given at

report (Palma & Hora, 2012).

55 18 Saturation

The saturation problem appears when the nonlinear activation functions reach its upper or lower
saturation limits. As El-Sharkawi explains (El-Sharkawi, 1995), any wide change in the input would produce
no or minimal change in the output and the neurons in this case are paralyzed. So it is common and
acceptable to have some neurons in the saturation region, but too many would render the neural network
useless. If network reaches saturation, the neurons must be randomly perturbed and the learning process

continued.

Our implementation includes a saturation verification block. When a specific number of neurons (30%)
reach the saturation limit (set equal to 0.9, this means, the neurons with an output greater or equal than

0.9 are considered a saturated ones) the algorithm randomly perturbed the weights and bias.

56 19 Overfitting

According to (El-Sharkawi, 1995) there is a difference between training and memorization. A model is

typically trained by maximizing its performance on some set of training data. By the other hand, the model

LASCA Project — Final Report 93

efficacy is determined not by its performance on the training data but by its ability to perform well on

unseen data.

When a model begins to memorize training data rather than learning to generalize from trend this is called
overfitting. Overfitting corresponds a test data error much higher that the train data error and means that
the neural system is over determined. A properly trained system should respond with same error measures
to both training and testing data. To avoid overfitting, this point must be identified and the training must
be stoped. A detailed explanation is given at (EI-Sharkawi, 1995). The figure illustrates the point where the

optimal learning and generalization are achieved, that is close to the global minimum of test error:

testing error

training crror -

Ircration Count

Figure R4/ 8 - Overfitting, from (El-Sharkawi, 1995).

57 20 Concluding Remarks

This work synthesizes theoretical aspects which are relevant to consider during the implementation of

neural networks. For each topic addressed the most relevant information was detailed.

58 Bibliography

Bishop, C. (1995). Neural Networks for Pattern Recognition: Clarendon Press Oxford.

Costa, L. (2008). Application of Evolutionary Swarms and Autoencoders to Wind-Hydro coordination.
Faculty of Engineering of the University of Porto, Porto, Portugal.

Demuth, H., & Beale, M. (2002). Neural Network Toolbox - User’s Guide (Version 4). The MathWorks.
Retrieved from The MathWorks website: http://cda.psych.uiuc.edu/matlab pdf/nnet.pdf

El-Sharkawi, M. A. (1995). Neural Network Application to High Performance Electric Drives Systems.
Paper presented at the Proceedings of the 1995 IEEE IECON 21st International Conference on
Industrial Electronics, Control, and Instrumentation.

LASCA Project — Final Report 94

Hagan, M. T., Demuth, H. B., & Beale, M. H. (1996). Neural Network Design. Boston and London: Pws
Pub.

Haykin, S. (1999). Neural Networks - A Comprehensive Foundation (2nd ed.). Ontario, Canada: Pearson
Education.

Heskes, T., & Wiegerinck, W. (1996). A Theoretical Comparison of Batch-Mode, on-Line, Cyclic, and
Almost Cyclic Learning. IEEE Transactions on Neural Networks, 7(4), 919-925.

Hora, J., & Palma, V. (2012). Analysis using descriptive statistics on the data used for the ITL networks
and on the data used in the Topology problem (Power System) INESC Interim Reports. Porto, Portugal:
INESC TEC.

Jayalakshmi, T. & Santhakumaran, A. (2011). Statistical Normalization and Back Propagation for
Classification. International Journal of Computer Theory and Engineering, 3(1), 1793-8201.

Jenssen, R, Principe, |., Erdogmus, D., & Eltoft, T. (2006). The Cauchy-Schwarz divergence and Parzen
windowing: Connections to graph theory and Mercer Kernels. Journal of the Franklin Institute, 343(6),
614-629.

Kim, D. (1999). Normalization Methods for Input and Output Vectors in Backpropagation Neural
Networks. International Journal of Computer Mathematics, 71(2), 161-171.

Kishan, M., Mohan, C., & Ranka, S. (1996). Elements of Artificial Neural Networks (Complex Adaptive
Systems): The MIT Press.

Miranda, V. (2007). Redes Neuronais — Treino por Retropropagacio (Texto de apoio a disciplina de
Controlo Difuso e Redes Neuronais do 52 ano da LEEC). Porto, Portugal.

Miranda, V., Krstulovic, J., Keko, H., Moreira, C., & Pereira, J. (2012). Reconstructing Missing Data in
State Estimation With Autoencoders. IEEE Transactions on Power Systems, 27(2), 604-611.

Mohamad-Saleh,]J., & Hoyle, B. S. (2008). Improved Neural Network Performance Using Principal
Component Analysis on Matlab. International Journal of The Computer, the Internet and Management,
16(2), 1-8.

Oja, E. (1982). A Simplified Neuron Model as a Principal Component Analyser. Journal of Mathematical
Biology, 15(3), 267-273.

Palma, V., & Hora,]. (2012). Theoretical Concepts of ITL Neural Networks INESC Interim Report. Porto,
Portugal.

Panchal, D., Ganatra, A., Kosta, Y. P, & Panchal, D. (2011). Behaviour Analysis of Multilayer Perceptrons
with Multiple Hidden Neurons and Hidden Layers. International Journal of Computer Theory and
Engineering, 3(2), 332-337.

Principe, J., Euliano, N., & Lefebvre, W. (2000). Neural and Adaptive Systems - Fundamentals Through
Simulations (1st ed.): John Wiley & Sons, Inc.

Principe, J. C. (2010). Information Theoretic Learning Renyi's Entropy and Kernel Perspectives:
Springer.

Silverman, B. W. (1986). Density Estimation for Statistics and Data Analysis. London, UK: Chapman &
Hall/CRC.

Singh, A., & Principe,]J. (2010). Kernel width adaptation in information theoretic cost functions. Paper
presented at the IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP).

Sola, ., & Sevilla, J. (1997). Importance of Input Data Normalization for the Application of Neural
Networks to Complex Industrial Problems. IEEE Transactions on Nuclear Science, 44(3), 1464-1468.

LASCA Project — Final Report 95

Torkkola, K. (2003). Feature extraction by non parametric mutual information maximization. Journal
of Machine Learning Research, 3, 1415-1438.

LASCA Project — Final Report 96

PTDC/EEA-EEL/104278/2008

59 1 Introduction

The training of a neural network is performed with the optimization of a specified cost function F. This
work applies the Steepest Descent Method (SDM) as the algorithm basing the optimization of neural
networks. The SDM is an iterative process that allows a neural network to be improved towards an
optimum, that can be a local or a global optimum. Equation R5/(1) shows the general adaptation of weights

used within SDM.

k+1 k
(Uij = O)ij +Awij
ok = o kg OF ea- RS/
ij ij Wawij

The SDM performs adjustments in the neural network weights, as defined in the following expression:

oF
Aw;j = n@ eq.R5/(2)

The parameter 1 corresponds to the iteration step or learning coefficient. This parameter assumes positive
values when the optimization problem is to be maximized, and it assumes negative values when the
optimization is to be minimized. A momentum term may be added to the SDM algorithm, which is intended
to prevent the optimization process to be trapped at local optima. Further reading on this subject can be

found in (Miranda, 2007). The algorithm SDM can be generally defined as follows:

JF _
Aw;;® = nmﬁ + ahw; Y eq. R5/(3)

LASCA Project — Final Report 97

60 2 Classic PROP theory overview

The back propagation method uses a supervised approach to train autoencoders. Accodingly, the train of
an autoencoder is performed with the minimization of the Mean Squared Error (MSE). The MSE is defined
in the next expression (where N is the total number of instances within the train set, and M is the total

number of neurons within the input layer) (Beale, Hagan, & Demuth, 2012):

N M N M
1 5 1 ,
MSE = m z Z(em‘) =N M z E(Tpi — Opi) eq. R5/(4)
p=1 p=1i=1

i=1

The derivative of the MSE in order to the output 0;; is defined as follows.

d
— MSE = —

30, N< (Tpi — Opi) eq. R5/(5)

The autoencoders considere in this work are trained to minimize the function MSE, using the algorithm
SDM (Miranda, 2007). Moreover, the adaptive learning rate was applied to the classic PROP algorithm.

Figure R5/ 1 provides the schematic visualization of this training procedure.

X o
Y

\

~— _
Classic methods (supervised)

Figure R5/ 1 - Schematic of an autoencoder trained with backpropagation.

Where,

® ay; =neuron i atinput layer for instance p;
e hyj =neuron j at hidden layer for instance p;
® 0p; =neuron i at output layer for instance p;

* t,; = Yp; target neuron i for instance p;

LASCA Project — Final Report 98

61 3 ITL Theory overview

This report includes insights on applying Information Theoretic Learning ITL criteria to train the 1° half of
the autoencoder separately. The 2" half of the autoencoder is trained in a subsequente stage with classic
backpropagation algorithm, using the train dataset as the target (¢;; = a;;). The ITL train of the 1* half of
the autoencoder is unsupervised. In an unsupervised learning method (against a supervised approach),
there is no formal desired response, the target. The representation of this approach is provided in Figure

R5/ 2.

Figure R5/ 2 - Schematic of an autoencoder trained within two separated parts.

As explained in (Principe, n.d.), ITL algorithms are based on a combination of nonparametric estimations of
probability density functions. Let a,. € RM be the input instances (each instance with M neurons) and
h,. € R™ be the hidden instance (with L neurons), with p = 1, ..., N. From this point onwards, the notation
used to refer to a general input instance is y; to refer to a specific input instance p is y, (= @, = a,.); to
refer to a specific hidden instance p is hy, (= hy,.). Then, the estimation of data PDF is given by the Parzen

Window method using a Gaussian kernel:

N
A 1
F0) =5 60 =yp0%D) eq. R5/(6)
p=1

Where o1 is the covariance matrix; N is the number of instances (TrainDim); M is the number of neurons
on input layer (DimiIn); L is the number of neurons on hidden layer (DimHidden). The ITL methods

proposed in this work are:

e Maximize the Entropy associated to the set of hidden instances, hp,p =1,..,N;
e Maximize the Mutual Information between the set of input instances, a,,p = 1, ..., N, and the set
of hidden instances, hp,p =1,...,N. This method was implemented using (i) Euclidean Distance

and (ii) the Cauchy-Swartz Mutual Information estimators.

LASCA Project — Final Report 99

e Minimize the Mutual information between all different combinations of two neurons within the set

of hidden instances (min ICS(hpl-,hpj): Vi#j;i,j=1,..,L;p=1,..,N).

61.1 3.1 Entropy Maximization in the Hidden Layer (MaxE)

This unsupervised method aims to maximize the entropy of the hidden layer. The calculation of entropy is
made using Renyi’s Quadratic Entropy (this is the simpler form to calculate the derivation of the
information forces (Principe, n.d.). This procedure has a complexity O(N?). The mathematic definition of

Renyi’s Quadratic Entropy is:

+00

Hg,(Y) = —10g< sz()’)dJ’> = —log(V(Y)) eq. R5/(7)

—00
Where V(Y) is the Information Potential. An estimation for Information Potential is provided in equation

R5/(8).

N N +o0
__E_ Ay, 2 _ . 2
VI =gz 0| 6 =300 DGy -y, 071)dy

i=1j=1

1 N N
= Fz 2 G(y; —yj,20°I)

i=1j=1

eq. R5/(8)

The physical interpretation is also provided:
Vij = G(yl - yj,O'ZI) = G(dij,O'ZI)
Where:

* y;,y; are the information particles; V;; can be seen as the interactions between this particles.
1 1
o V= NZ]- Vij = NZ]- G(dij,azl) is the sum of interactions on the i — th information particle.

1 . :
o V= ﬁZiZ]- V;j is the sum of all pairs of interactions.=Information Potential

A physical interpretation of these quantities can be found in (Principe, n.d.). Maximize entropy of the
hidden layer (MaxE) is equivalent to minimize the Information Potential V(Y). The Information Potential

was derivated (information forces) to perform the gradient method. Since derivative of a Gaussian is:

LASCA Project — Final Report 100

d 1
6_%'6(%' = ¥j,20%1) = =G(yi = y;,20°1) - 5= (¥ —)
The information forces become:

N

N

d 1 1

Fi = a—yiV(Y) = —WZ G(yi—y;.20%1) (yi —y;) = _Wzlvijdij
]=

J=1

The equations for the gradient method are:

0 N 19 T oy, N0
70/) = ZH [6_yiV(Y)] 0 Zizl“”i] o

Where:

ayi_ ayl aneti
dw Onet; dw

And:

yi = p(net;)
@ is the activation function (see definition of net forward at eq. R5/(49)).

Cost Function

The cost function is the Entropy of the output vector:

1
Hg, (V) = —log(V(Y)) = —log Fz G(y; —yj,20%I)

N N
=1

j=1

61.2 3.2 Mutual Information Methods

eq. R5/(9)

eq. R5/(10)

eq. R5/(11)

eq. R5/(12)

eq. R5/(13)

eq. R5/(14)

The idea of this method is use ITL to maximize the mutual information between input instances and the

output at hidden layer, in sense to maximize the transfer information from data or minimize the mutual

information between output neurons of the hidden layer to measure the independence between them.

Mutual information can be computed as a difference of Shannon entropies:

LASCA Project — Final Report

101

I(X,Y) =H(X) - HX|Y) eq. R5/(15)

But as we seen above (see MaxE Chapter), Shannon entropy is not easy to estimate (Principe, n.d.). Principe
suggests (Principe, 2010, n.d.)an alternative estimation for mutual information based on Kullback-Leibler

divergence that estimates the divergence between the joint PDF and the factorized marginal.

fxr (6, y) dx
fxfy)

dy eq. R5/(16)

IX,Y) = KL(fXY(x:y):fX(x)fY(y)) = fffxy(x:y) log
But this is not quadratic in PDF so they cannot be easily integrated. Then Principe proposes new distances

measures between two PDFs which contain only quadratic terms: Euclidean Distance (||x||? + [|yl|? —

llxIZ1y1I?

Ty > 0). The Ml estimators become (Principe, n.d.):

2xTy > 0) and Cauchy-Schwartz inequality (log

o061 = [[fr®Cuddady =2 [[fur G @fy)dady

* f f f* Oy * ()dxdy ea- Re/(17)
_ (ffnyz(x,y)dxdy)(fffxz(x)fyz(y)dxdy)
fes (1) = 08 (G GOy () dxdy)? e Rs/(19
Defining the above terms like:
= [[o oydaxay
Vm = f ffxz(x)fyz(J’)dXdy eq. R5/(19)

Ve = [| oG Gf 0)dxdy

Corresponding to joint, marginal and cross information potentials, respectively. Ml estimators can be

rewritten as:

Iep(X,Y) =V, = 2Vc + Vy eq. R5/(20)

LASCA Project — Final Report 102

Ies(X,Y) = logV, — 2log V¢ + logVy

Based on the Parzen Window method, the joint PDF and marginal PDF can be estimated as:

N
A 1
frr(x,y) = Nz G(x —x;,0°1)G(y — y;,0°I)
i=1
N
A 1 ,
fe) =% Gx—x,0%D)
i=1

N
R 1
) = NZ 6y -y, 01)

And joint, marginal and cross information potentials become:

N N
~ 1
V=5)) 6= %, 20° G — ¥;,20°D)

i=1j=1
LA
Vy = V,V, with szzz:G(zi—zj,Zazl) z = {x,y}

i=1j=1

N N N
1w (1 L\ (1 ,
7. :NZ NZ G(x; — x;,2021) Nz G(yi — v 2021)
1= Jj=

j=1

Consider, for the next section, a general variable z = {x, y} and the next notation:

Vﬁ = G(Zi—'ZV,ZUZI)

N N N
v 1 L1 ,
=N2 vz =NZ G(di; 2021 =Nz G(zi — z;,20°1)
= = =
N N N N
1 1]
Su-aS(55) w5 S
i=1 j=1

i=1j=1

LASCA Project — Final Report

eq.

eq.

eq.

eq.

eq.

eq.

eq.

eq.

R5/(21)

R5/(22)

R5/(23)

RS5/(24)

R5/(25)

RS/(26)

RS/(27)

R5/(28)

103

Mutual Information Maximization between the input and hidden layer — Cauchy Schwartz Estimation

(MaxMI_CS)

In this method, our aim is maximize Ml between two vectors, vector of input instances and the vector of

hidden layer outputs. The Cauchy Schwartz Ml estimator between two vectors becomes (Principe, n.d.):

Ies(X,Y) = log

eq. R5/(29)

(V)2

ViV
ve?

that case, the Information Potential derivative (information forces) to perform the SDM method in order to

Maximize Cauchy Schwartz Ml is equivalent to maximize cross information potential (CIP), V¢ip = In

the variable z = {x, y} becomes:

, 0 0
FZ = EICS(X, Y) = &(logV] — 2logV, + logVy)

eq. R5/(30)
1 aV] 1 0V, 1 dVy

= + —
V, 0z Ve 0z Vy 0z

Where:
1 N N
5= 3| W 2, 6=, 20716 (3~ 3, 20%)

= ——2 G(x; — x;,2021)G (y; — y;,20°1) 22

=1 eq. R5/(31)

N

1
y
- NZO-Z Z Vl)]cVL] d
Jj=1

In our case, z = {y} (neurons at hidden layer):

aV] Xy Y
v N2g2 Z ViiVij dij, dij=y,—y; eq. R5/(32)

Similarly,

LASCA Project — Final Report 104

v, (I Q.
E:—Nzazzvj idij, Ay =Yi—Y;

N
Wy 1 ,
By N Z Vijdii

And information forces are:

1|2 Vl’ngd 2 Vii{dij 2V VxVy d
YNGR\ LIV LTy g V,-x1§y v

Remembering:

T

] I 9yi _ N 9V
e Ies(X,Y) = Zi=1 [ayi Ies(X, Y)] e Zi=1[Fi] %

Cost Function

The cost function is the Cauchy Schwartz Ml between inputs and hidden outputs:

(v)

(v Vi""iy)z

Ics(X,Y) =log = log

V, Vi
(Ve)?

eq. R5/(33)

eq. R5/(34)

eq. R5/(35)

eq. R5/(36)

eq. R5/(37)

Mutual Information Maximization between the input and hidden layer — Euclidean Distance Estimation

(MaxMI_ED)

The Euclidean Distance Ml estimator becomes (Principe, n.d.):

IED(X'Y) = V, - ZVC + VM

eq. R5/(38)

Maximize Euclidean Distance Ml is equivalent to maximize cross information potential (CIP), V¢p = V) —

2V + Vy. The Information Potential derivative (information forces) to perform the SDM method in order

to the variable z = {x, y} becomes:

LASCA Project — Final Report

105

d av, a
Ff =2 Ipp(X,Y) = —=> = (V) = 2Vc + Viy)

eq. R5/(39)
v, _ave vy

=% %o VYo

In our case, z = {y} (neurons at hidden layer):

bl 1 N N y 2 N y
R el viyY —— Vv +vxyY
ay (NZ 21':1 2]':1 Uy N i=1 Lot)

N2Li 2027 NP N4 4202 N2 Li202 Y
= J= J=
d YL_y]
N N
= NZZaZ z U—ZVXZVf.diﬁvxz:ngij . dii =y,
j=1 j=1

N
1
:_WZ(ViJ;_ZVix-l_Vx) Vii']dij’ dij =y =
j=1

~ "N chx Vij dij, dij=yi—y; and Cf = V=2V +V*

Concluding, information forces are:

F = ~NZo zzcx Vi] eq. R5/(40)

And SDM method becomes:

9 Nora o 1 oy N 0y
—_ = — - = F]T = .R5/(41)
5 0K Y) zi=1 [ayi VED] 9w 2i=1[1" 50 ea- RS/

LASCA Project — Final Report 106

Cost Function

The cost function is the Euclidean Distance MI between inputs and hidden outputs:

IED(X'Y) = V, - ZVC + VM

1 2 eq. R5/(42)
= FZ ViV — NE Vv + vy
i i
Or, according to (Xu & Principe, 1999):
1 N N
Igp(X,Y) = mz Z Cij Vf; eq. R5/(43)

Mutual Information Minimization between all combinations of neurons of the hidden layer (Uni)

The method MinHiddenNeuronMI_CS minimizes the Mutual Information / between each combination of
two different neurons integrating the hidden layer. This procedure ensures that the information contained

in each hidden neuron is maximized, thus decreasing the replication of information over the hidden layer.

The considered pairs of different neurons are specified as (Y;,Y5), ..., (Y, Y1), ., Vi, Yiex1), oo (Vi Y1), oo,
(Y,—1,Y.), with (k # L). One way to find the indexes of these combinations is to consider a squared matrix,
with the position of the hidden layer neurons for both rows and columns, and chose the indexes related to
the superior triangular positions of this matrix. A simple example is provided in Figure R5/ 3. Considering
only the combinations of different neurons is adequate due to the mutual information property of

symmetry I(X,Y) = I(Y, X).

Y1
¥2
Y.
Y.
A
¥
Y
Y.
Y
Y
Y
Y

Y1, Y1, y1, i, Y1, 1, Y1, Y1, ¥i, Y1, Y1,

Y1 ¥2 ¥3 Y4 Y5 ¥6 ¥7? Y8 Y9 Y10 | Y11 | Y12

w2, | va, | va, | v, [w2, | va | va, | ov2, | w2, | Y2,

Y2 Y3 Y4 ¥s ¥6 Y7 Y8 Y9 Y10 | Y11 | Y12

v3, [v3, | v3, |v3 [v3 | v3 |v3 |V |vs

Y3 Ya Y5 Y6 Y7 y8 Y9 Y10 | Y11 | Y12

a4, Ya, Y4, Y4, Y4, va, Y4, Y4,
¥5 Y6 ¥7 v8 Y9 [yio | vi1 | vi2

Y4

Y5, Y5, Y5, Y5, s, Y5, Y5,
¥6 Y7 Y8 Y9 Y10 | Y11 | ¥i2

¥5

Y6, Y6, v6, 6, Y6, Y6,

Y6 vz | v8 | vo | vwo | vi1 | vi2
¥7 Y7, Y7, Y7, Y7, Y7,
ve | vo [vio [v [vz

ve, | va, | v8, | v,

Y8 ve | vio | vi1 [vz
Yo, | v, | vo,

¥9 Y10 ¥i1 Y12
Y10, | 10,

Y10 vit | viz
i1,

Y11 yi2

Y12

Figure R5/ 3 - lllustration of the considered pairs of neurons within hidden layer.

LASCA Project — Final Report 107

The error of these combinations is only propagated to the respective weights. For example, the error
associated with the combination (Y;,Y;) is only propagated to the input synapses in these two neurons.
The Cauchy Schwartz mutual information theory described for the method MaxMI_CS is applied here, for

each pair of neurons, and consequently following a one-dimensional approach.

Cost Function

The cost function of this method is the sum of the Cauchy Schwartz Ml obtained for all different pairs of

hidden neurons. This cost function is used following a minimization approach.

L L
CostFunction = Z 2 Ics (Y, Y)

n=1m=n+1
eq. R5/(44)
TOTALcomb

L
Z Ics(comb;), TOTALcomb = 5 (L-1)

i=1

62 4 Other Theory Overview

62.1 4.1 MinMax Normalization Method

The training of neural networks must include a pre-processing normalization of data. The advantage of this
procedure is to remove the sacle dependencies of data. To perform this normalization we choose the Min-

Max method:

data — ming,q4

datanormatizea = (Mmaxyey — Minyey,) + Minyey eq. R5/(45)

MmaXorig — minOrig

Where max pe,, is the maximum value for the normalized data; min p,,, is the minimum value for the
normalized data; max ¢4 is the maximum value for the original data; min 4 is the minimum value for

the original data. In our case, max ye, = 1 and min p,, = —1:

2 x data — maxgrig — Mingyrig

datanormatizea = eq. R5/(46)

MmaXorig — minOrig

LASCA Project — Final Report 108

There are other methods for data normalization but this method has the advantage of preserving exactly all
relationships in the data, however it is sensitive to outliers. Another point in normalization procedure is the

choose of max,;g and ming,;4. In our code we implemented the methods:

e Global normalization: the chosen of max, and min, parameters can be done in all set of data (if

they are similar, as our case);
¢ Normalization by entry: the chosen can be done by input matrix entry, this means that max,,;4

and ming,;4 choice need to be done for each input neuron in the correspondent set of instances.

Auxiliary calculations: aim of normalizing data process is transform the data in the original range

[Mmin grig, Max grig] into a new range [Min yey, Max yew), as schematized in Figure R5/ 4.

Figure R5/ 4 - Schematic of data transformation incurred with min max normalization.

We need the straight line equation:y =m-x + b.

Max yew — MiN ey

m = .
max orig — MIN grig

_maxNeW—mmNew_x_l_b

y

max grig — MiN grig
(max grig, MAX yey) € straight line, so:

max yew — MIN yew

max yew = “Max grig + b

max orig — min Orig

max yew — MIN yew

b = max yew — TMaAx grig

max orig — min Orig

_ MAX yey " MAX grig — MAX New * MIN grig — MAX yew *MAX grig T MIN yey " MAX orig

max orig — min Orig

LASCA Project — Final Report 109

_ MAX New " TMUN grig — MIN New * MAX orig

max orig — min Orig

So,
)= max yew — MIN yew Max yew " MIN grig — MIN yey * MAX orig
max orig — min orig max orig — min orig
1
y = - [(max New — MUN yey) = X — (MAX pey, - MIN orig — MUN yey " MUN grig
max grig — MiN grig
+ MiN ey * MIN grig — MIN pgyy - MAX On-g)]
1
y= : [(max New — TUN New) - x — (max New — Mun New) TTMUN grig — MUIN New
max orig — MIN orig
- (min orig — max Orig)]
X — MiN grig (') '
y= ; Max yew — MIN yey) + MUN yey
max grig — MIN grig
This is,
data — ming,4] _
datanormaiizea = MaxXyew — MiNyew) + MiNyew

MaxXorig — MiNgrig

62.2 4.2 Parzen window width

Chose the appropriate window size is not easy (Jenssen, Principe, Erdogmus, & Eltoft, 2006). However the

Silverman’s Rule gives us optimal window size estimation (Silverman, 1986, p. 87), for a multivariate normal
case:

A~

Oopt = 0 hopt
=6 A(k) -n~1/ @+ eq. R5/(47)

=6-{4/(d + 2)}/(@+8 . n~1/(d+4)

Where 62 is the average marginal variance:

6'2 = d_lzsii

4

d is the dimension, in our case is the hidden vector dimension (L) and n is the size of train set (N).

LASCA Project — Final Report 110

62.3 4.3 Adaptive Learning Rate

An adaptive learning rate was implemented in all autoencoders. The rules used to define the adaptive
learning evolution are the ones define in (Hagan, Demuth, & Beale, 1996, pp. 12-12). These rules are
detailed here. This section describes the influence of the parameters learning rate (Ir), learning rate
increase (Ir_inc), learning rate decrease (Ir_dec) and maximum performance increase (max_perf_inc) (we
use the same name adopted in MATLAB neural networks toolbox for these parameters). The changes to
induce in the learning rate are assessed by the value of the ratio between the cost function in the current

epoch and the cost function obtained in the previous epoch:

. Fy
Ratio = —— eq. R5/(48)

t-1
The changes induced into the autoencoder parameters, considering different values of this ratio and
depending on the minimization / maximization objective function, may include i) changes in learning rate,
ii) acceptance or rejection of the changes in weights and bias of the current epoch, iii) changes in the

momentum term rate. So far, the model does not include changes on the momentum term rate (note that

the momentum term is set to zero in all the results further presented).

Minimizing case

When minimizing the cost function, the adaptive learning algorithm evolves differently under three distinct

scenarios. Table R5/ 1 summarizes the three scenarios.

Table R5/ 1 - Different cases of adaptive learning algorithm evolution when minimizing the cost function.

Ratio value |Assessment Learning Rate Weights and Bias

The cost function evolves as

The learning|The changes
desired. coefficient is increased|performed in the
J-eo,1[by Ir_inc rate (in our|current epoch are

The cost function is evolving in the case always 1.01 —maintained

. 0 . .
desired direction (minimizing). augmenting 1%). (weights, bias)

The changes of
[1,max_perf_ [The cost function evolves in the|The learning rate is not &

current epoch are
inc] opposite direction. changed. P

maintained (weights

LASCA Project — Final Report 111

and bias).

“not severe”

The cost function had evolved in
the opposite direction to the one

that was desired, but only 4%

The cost function evolves in the

opposite direction.

The changes
] “too severe” The learning rate is cut|performed in the
max_perf_inc by Ir_dec (in our caselcurrent epoch are
,+0o[always 0.5). discarded (weights
The cost function evolved)
and bias).

drastically in the opposite direction
to the one expected (more than

4%)

The first scenario occurs when the Ratio value is lower than 1, meaning that the cost function decreased. In
this case, the algorithm accepts the changes performed in the structure of the autoencoder (weights and
bias upgrades), and the learning coefficient is increased by Ir_inc. The second scenario (“not severe”) occurs
for Ratio values comprised between [1, max_perf inc]. Besides the cost function evolution being opposite
to the objective, the algorithm still accepts the changes made in this epoch and do not change the Ir. The
third scenario (“too severe”) is considered for Ratio values higher than max_perf inc. In this case the
algorithm will discard the changes developed in the current epoch (this means that every change made
under the current epoch is reverted, and the next epoch will have the same starting point). In this case the

algorithm cuts the Ir by Ir_dec.

Maximizing case

The maximizing case (used in entropy of hidden layer and mutual information between inputs and hidden

layer) is discussed in this section. Three possible situation may occur, as summarized in Table R5/ 2.

LASCA Project — Final Report 112

Table R5/ 2 - Different cases of adaptive learning algorithm evolution when maximizing the cost function.

1/max_perf_in

cl

The cost function evolved

drastically in the opposite
direction to the one expected

(more than 1/ max_perf_inc).

by Ir_dec (in our case

always 0.5).

CostFn /
Assessment Learning Rate Weights and Bias
PrevCostFn
The cost function evolves in
the opposite direction.
The changes performed
]-oo, “too severe” The learning rate is cut

in the current epoch are
discarded (weights and
bias).

[1/max_perf i

The cost function evolves in

the opposite direction.

“not severe”

The learning rate is not

The changes of current

epoch are maintained

nc, 1] changed.
(weights and bias).
The cost function had evolved
in the opposite direction to
the one that was desired, but
only till 1/ max_perf _inc.
The cost function evolves as
: The learning
desired. The changes performed
coefficient is increased
in the current epoch are
11,400 by the Ir_inc rate (in| '
The cost function is evolving in our case always 1.01 — nTalntalned (weights,
the desired direction augmenting 1%). bias)
(maximizing).
LASCA Project — Final Report 113

The reasoning for these three situations is similar to the one previous described. The only difference is the

use of the inverse value of max_perf _inc to define the limit between “not severe” and “severe” scenarios.

62.4 4.4 Stop Criteria

The stopping criterion is the number of epochs for all methods. The second part of the autoencoder
includes an extra stop criterion: when the MSE of the train set is lower than a specified goal, the algorithm

stops.

62.5 4.5 Neural Network Saturation

The saturation problem appears when the nonlinear activation functions reach its upper or lower
saturation limits (EI-Sharkawi, 1995). As El-Sharkawi explains (El-Sharkawi, 1995), any wide change in the
input would produce no or minimal change in the output and the neurons in this case are paralyzed. El-
Sharkawi also confirms that it is common and acceptable to have some neurons in the saturation region,

but too many would render the neural network useless.

Saturation
“

Input

Figure R5/ 5 - Saturation regions of a Sigmoidal Function (from (El-Sharkawi, 1995)).

If network reaches saturation, the neurons must be randomly perturbed and the learning process
continued. El-Sharkawi (EI-Sharkawi, 1995) highlights the imperative need of including this saturation check

in any NN training.

63 5 ITL methods pseudo-code

This section presents the pseudo-code for the four ITL methods developed. The code of each one of these

methods is detailed in the further sections.

LASCA Project — Final Report 114

MaxE

Initialize[int numEpochs1; int numEpochs2; int Dimin; int DimHidden; int TestDim; int TrainDim; double momRate; actFcnFlatness; vec learnCoeffl; vec learnCoeff2; vec
seed;]
Input [mat TrainDataSet]; Normalize [TrainDataSet]; Randomize [TrainDataSet]; Input [mat TestDataSet]; Normalize [TestDataSet]
Loop over learnCoeffl
[
Loop over learnCoeff2
[
Loop over seed
[
Initialize [mat Weights1; vec Bias1;]; Initialize [mat HiddenTrain;];
Loop over Epochsl
[
Loop over TrainDim (refer to instance yi)
[
Loop over TrainDim (refer to instance yj)
[
Loop over DimHidden
[
Extract[vec yi; vec yj;]; Calculate [vec dij=yi-yj;];
]
Calculus [Vij = G(yi-yj, 2sig”2);]; Initialize [mat delta_weights1;];
Loop over DimHidden
[
Calculus [dPI/dyi; dyi/(activation function);]
Loop over DimIn
[
Calculus [double momterm; dnetl/dweights1]; Calculus [mat delta_weights1;]
Update [Weights1;]
|
Calculus [vec delta_Bias1;]; Update [Bias1;]

]
|
initialize mat prev_HiddenTrain;
prev_HiddenTrain = HiddenTrain; Update HiddenTrain;
Verify [saturation conditions of first half];
Calculus [entropy cost function;]
Verify [Adaptive learnCoeffl conditions]
|
Initialize [mat Weigths2; vec Bias2;]; Initialize [mat OutputsTrain;]
Loop over Epochs2
[
Loop over TrainDim (refer to instance yi)
[
Loop over DimOut
[Calculus [dP1/dyi;]]
Loop over DimHidden
[
Loop over DimOut
[update Weigths2;]
1
Loop over DimOut
[Update Bias2;]
|
Loop over TrainDim
[Update OutputsTrain;]
Verify [saturation conditions of second half]; Calculate [mat ErrorMatrixTrain; MSE_train; MAE_train;]
Verify [Stop criteria; Adaptive learnCoeff2 conditions]
Calculate [mat HiddenTest; mat OutputsTest;]; Calculate [mat ErrorMatrixTest; MSE_test; MAE_test;]
|
Print [Results;]

MaxMI_CS

Initialize[int numEpochs1; int numEpochs2; int DimIn; int DimHidden; int TestDim; int TrainDim; double
momRate; actFcnFlatness; vec learnCoeffl; vec learnCoeff2; vec seed;]; Input [mat TrainDataSet];

Normalize [TrainDataSet]; Randomize [TrainDataSet]; Input [mat TestDataSet]; Normalize [TestDataSet]

LASCA Project — Final Report 115

Loop over learnCoeffl

[

Loop over learnCoeff2

[

Loop over seed

I 1

Initialize [mat Weightsl; vec Biasl;]; Initialize [mat HiddenTrain;]; Calculus [Vij_x; Vi_x; V_x;];

Initialize [CostFn; Prev_CostFn;];
Loop over Epochs1
LTI
Initialize mat Vij_y; vec dij_y; vec Vi_y; double aux_viy;
Loop over TrainDim (refer to instance yi)
I
Loop over TrainDim (refer to instance yj)
T I O |
Loop over DimHidden [Calculate [vec dij_y=yi-yj;]]
Calculus [Vij_y = G(dij_y, 2sig"2);]
N R

Calculus Vi_y;

L]

Loop over TrainDim (refer to instance yi)

LTI

Loop over TrainDim (refer to instance yj) [Calculus aux_vj; aux_vm;]

T

Loop over TrainDim (refer to instance yi)

I

LASCA Project — Final Report 116

Loop over TrainDim (refer to instance yj)

LTIt

Loop over DimHidden
O B R |
extracty_i;y_j;
Calculus dij; auxN1; auxN2; auxN3;

FErrl]

Calculus N1; N2; N3; D3;

L]

Loop over DimHidden
O
Calculus Fi=dMI/dyi; dy/dw;
Loop over DimIn [Update Weighs1;]

Update Biasl;

N
LT

initialize mat prev_HiddenTrain;
prev_HiddenTrain = HiddenTrain;
Update HiddenTrain;
Verify [saturation conditions of first half];
Calculus [entropy cost function;]
Verify [Adaptive learnCoeff1 conditions]
I 1]

Initialize [mat Weigths2; vec Bias2;]

Initialize [mat OutputsTrain;]

Loop over Epochs2

LASCA Project — Final Report 117

Loop over TrainDim (refer to instance yi)
LI
Loop over DimOut [Calculus [dP1/dyi;]]
Loop over DimHidden

LT

Loop over DimOut [update Weigths2;]

R

Loop over DimOut [Update Bias2;]
(N
Loop over TrainDim [Update OutputsTrain;]

Verify [saturation conditions of second half]; Calculate [mat ErrorMatrixTrain; MSE_train;

MAE_train;]
Verify [Stop criteria; Adaptive learnCoeff2 conditions]

Calculate [mat HiddenTest; mat OutputsTest;]; Calculate [mat ErrorMatrixTest; MSE_test;

MAE_test;]
I 1]
Print [Results;]
| 1]
]

MaxMI_ED

Initialize[int numEpochs1; int numEpochs2; int DimiIn; int DimHidden; int TestDim; int TrainDim; double

momRate; actFcnFlatness; vec learnCoeffl; vec learnCoeff2; vec seed;]
Input [mat TrainDataSet]

Normalize [TrainDataSet]

LASCA Project — Final Report 118

Randomize [TrainDataSet]
Input [mat TestDataSet]
Normalize [TestDataSet]
Loop over learnCoeffl
[
Loop over learnCoeff2
[
Loop over seed
|10
Initialize [mat Weights1; vec Bias1;]
Initialize [mat HiddenTrain;]
Calculus [V; Vj; Vij; Vi; Cij;]
Initialize [CostFn; Prev_CostFn;]
Loop over Epochsl
I Il
Initialize vecy_i; vecy_j; vec dij2; double Vij_hid; mat delta_weights1;
Loop over TrainDim (refer to instance yi)

LI

Loop over TrainDim (refer to instance yj)

L

Loop over DimHidden
N R |
Calculate [vec y_i; vecy_j; vec dij2=yi-yj;]
N R
Calculus [Vij_hid = G(dij2, 2sig"2);]
Loop over DimHidden

LASCA Project — Final Report 119

calculus derv_i; derv_j; dV/dyi; dV/dyj; dy/dw;
Loop over DimIn [update Weigths1;]

Update Biasl;

initialize mat prev_HiddenTrain;
prev_HiddenTrain = HiddenTrain;
Update HiddenTrain;
Verify [saturation conditions of first half];
Calculus [entropy cost function;]
Verify [Adaptive learnCoeffl conditions]
I 1]

Initialize [mat Weigths2; vec Bias2;]

Initialize [mat OutputsTrain;]

Loop over Epochs2

LTI

Loop over TrainDim (refer to instance yi)

Tl

Loop over DimOut [Calculus [dP1/dyi;]]

Loop over DimHidden
T I O

Loop over DimOut [update Weigths2;]

L Er 1]

Loop over DimOut [Update Bias2;]

LASCA Project — Final Report 120

1]

Loop over TrainDim [Update OutputsTrain;]
Verify [saturation conditions of second half];
Calculate [mat ErrorMatrixTrain; MSE_train; MAE_train;]
Verify [Stop criteria; Adaptive learnCoeff2 conditions]
Calculate [mat HiddenTest; mat OutputsTest;]
Calculate [mat ErrorMatrixTest; MSE_test; MAE_test;]
Ll
Print [Results;]
1]
]

Uni
Initialize[int numEpochsl; int numEpochs2; int Dimlin; int DimHidden; int TestDim; int TrainDim; double
momRate; actFcnFlatness; vec learnCoeffl; vec learnCoeff2; vec seed;]
Input [mat TrainDataSet]
Normalize [TrainDataSet]
Randomize [TrainDataSet]
Input [mat TestDataSet]
Normalize [TestDataSet]
Loop over learnCoeffl
[

Loop over learnCoeff2

[

Loop over seed

|10

LASCA Project — Final Report 121

Initialize [mat Weights1; vec Bias1;]
Initialize [mat HiddenTrain;]
Initialize [CostFn; Prev_CostFn;]
Loop over Epochsl
I I
Initialize [mat delta_weights1;]
Loop over DimHidden (refers to the first neuron of hidden layer)

LTI

Loop over DimHidde (refers to the second neuron within hidden layer)
I T O
Initialized [mat Vij_x; mat Vij_y; vec Vj_x; vec Vj_y;]
Loop over TrainDim (refer to instance yi)
O R R |
Loop over TrainDim (refer to instance yj) [Calculus [dij_x; dij_y; Vij_x; Vij_y;]]
Calculus [Vj_x; Vj_y;]
T I O B O
Calculus [V_x; V_y;]
Calculus [D1; D2_x; D2_y;]
Loop over TrainDim (refer to instance yi)

LErr

Loop over TrainDim (refer to instance yj)
I I I B B
Calculus [x_i; x_j; y_i; y_i; dij_x; dij_y;]
Calculus [N1_x; N2 _x; N3 _x; N1_y; N2_y; N3 _vy; D3;]
[T T B
Calculus [Fi_x; Fi_y;]

LASCA Project — Final Report 122

Calculus [dxj/activation function; dyj/activation function;]
Loop over DimIn [update Weigths1;]

Update Biasl;

initialize mat prev_HiddenTrain;
prev_HiddenTrain = HiddenTrain;
Update HiddenTrain;
Verify [saturation conditions of first half];
Calculus [entropy cost function;]
Verify [Adaptive learnCoeff1 conditions]
I 1]

Initialize [mat Weigths2; vec Bias2;]

Initialize [mat OutputsTrain;]

Loop over Epochs2

Il

Loop over TrainDim (refer to instance yi)

L

Loop over DimOut [Calculus [dPI/dyi;]]

Loop over DimHidden

LT

Loop over DimOut [update Weigths2;]

N B

Loop over DimOut [Update Bias2;]

I

LASCA Project — Final Report

123

Loop over TrainDim [Update OutputsTrain;]

Verify [saturation conditions of second half];

Calculate [mat ErrorMatrixTrain; MSE_train; MAE_train;]
Verify [Stop criteria; Adaptive learnCoeff2 conditions]
Calculate [mat HiddenTest; mat OutputsTest;]

Calculate [mat ErrorMatrixTest; MSE_test; MAE_test;]

L1l]

Print [Results;]

1]
]

64 6 ITL methods code documentation

This section details the code developed to train autoencoders using two separated parts. The first part is
trained with an ITL criteria, implemented using a gradient approach. The second part evolves following the
classic propagation gradient criteria. These autoencoders share the same general structure, and only differ
concerning the specific criteria depending on the ITL method applied. Therefore, in this section the shared
structure among all ITL autoencoders is described. The specific criterion used in each method is detailed in

further sections. All autoencoders are implemented using the batch mode only.
Auxiliary Functions

actFcn

This function implements the choice for the activation function, with activation and actFcnFlatness as input
parameters, and this function returns scalar variable. We can choose between 3 functions: Logistic,
Hyperbolic Tangent and Linear.

1

___activation
1 + e actFcnFlatness

Logistic =

LASCA Project — Final Report 124

2

___activation
1 + e actFcnFlatness

Hyperbolic Tangent =

2
1+ e—2+activation

At MATLAB, Hyperbolic Tangent = — 1, considering actFcnFlatness = 1/2.

Linear = activation

The parameter values adopted were the same as the ones pre-specified in MATLAB software.

DervActFcn

This function implements the derivative for the chosen activation function, with output and actFcnFlatness

as input parameters.

(output * (1 — output))
actFcnFlatness

Derivative Logistic =

(1 — output?)
2 = actFcnFlatness

Derivative Tangent =
At MATLAB, Derivative Tangent = (1 — output?), considering actFcnFlatness = 1/2.

Derivative Linear = 1

To our runs, Derivative Hyperbolic Tangent for MATLAB is chosen according to the choice made for the

activation function. The result of this function is a variable of type double, tmpDerivative.

PCA

This function implements the intrinsic function princomp of Library Armadillo for C++. The input
parameters are TrainSet_PCA and Dimin. The output of Armadillo function princomp is a matrix (Diminx
Dimin) of coefficients of principal components (Dimin). The result of this function is a variable of type

matrix, Weights_PCA.
//Auxiliar Functions
double actFcn(double activation, double actFcnFlatness)
[
double output=(2.0/ (1.0 + exp(- 2.0* activation))) - 1.0; //matlab

return output;

]

LASCA Project — Final Report 125

double DervActFcn(double output, double actFcnFlatness)
[
double tmpDerivative;
tmpDerivative = (1.0 - pow(output, 2.0));
return tmpDerivative;

]

mat PCA(mat TrainSet_PCA, unsigned int DimlIn)
[
mat Weights_PCA(DimIn,DimIn);
Weights_PCA = princomp(TrainSet_PCA);

return Weights_PCA;

Auxiliary parameters

The goal parameter defines the boundary from where the autoencoder should stop. Thus, if the MSE

obtained with the autoencoder achieves a value lower than the parameter goal, the algorithm stops.
double Ir_dec =0.5;
double Ir_inc = 1.05;

double max_perf_inc = 1.04; //performance/racio (=CostFunction/Prev_CostFunction) a partir do qual nao

se actualizam pesos
double goal = 0.00000001; //como no matlab

The other three parameters (Ir_dec, Ir_inc and max_perf_inc) are also specified, in this example the values

applied by default in MATLAB were adopted.

Vector learnCoeff

The code is intended to run several simulations, each one with a different learning coefficient. This is
achieved with the definition of a vector “learnCoeff”, which includes all the desired values to test the
learning coefficient. The construction of this vector can be done with a loop (when the values differ on the

same slope) or with the individual inputs (when the values to test are distinct).

LASCA Project — Final Report 126

//###defining a vector containing the learning coefficients to test the reducer###
vector <double> learnCoeff1;

learnCoeffl.push_back(0.005);

learnCoeffl.push_back(0.05);

learnCoeffl.push_back(0.5);

learnCoeffl.push_back(5);

vector <double> learnCoeff2;
learnCoeff2.push_back(0.005);
learnCoeff2.push_back(0.05);
learnCoeff2.push_back(0.5);

learnCoeff2.push_back(5);

unsigned int DimLC1;

DimLC1 = learnCoeffl.size();

unsigned int DImLC2;
DimLC2 = learnCoeff2.size();
//#t#end of defining a vector containing the learning coefficients to test the reducer##

The value “DimLC1” measures the dimension of the vector containing the learning coefficients to test first
part. This variable is further applied to define one of the main loops. The value “DimLC2” measures the

dimension of the vector containing the learning coefficients to test second part.

Main Results File

The code creates a csv file, with a specific name for each method, to further include the main information
of each autoencoder tested. This file will include information on the i) starting values of the two learning
coefficients used (for the first part and second part), ii) the final values of these coefficients (they evolve

following an adaptive algorithm, which decreases their value whenever the respective cost function evolves

LASCA Project — Final Report 127

to the opposite direction to the optimization objective), iii) the boost random seed used, iv) the final
information potential obtained in the end of the first part (e.g. the final value of entropy), v) the mean

absolute error MAE and vi) the mean squared error MSE between outputs and inputs of the autoencoder.
ofstream Resultados_LrCoeff;//ficheiros de saida de dados

vec MaxMI(DimLC);

string name ("Results_MaxMI_CS.csv");

Resultados_LrCoeff.open(name);

Fixed Parameters

The main parameters are defined together. The variables numEpochsl and numEpochs2 define the
number of epochs that the code will execute in each part of the autoencoder (first part relates to the ITL

criteria, and the second part relates to the classic propagation).

Dimln is the number of neurons at the entrance of the autoencoder. DimHidden is the number of neurons
composing the hidden layer. DimOut relates to the number of neurons composing the third layer (when

construction autoencoders, DimOut is equal to DimlIn). These three variables are “integers”.

The variables dDimln, dDimHidden and dDimOut are “doubles”, with similar meaning as the correspondent
“integers” (the joint use of integer and double is not a good idea for some functions - therefore we never

mix integers with doubles).

The number of instances stored to integrate the test data set is defined with the “integer” TestDim, and
dTestDim is the “double” corresponding to the “integer” TestDim. The number of instances integrating the
Train data set is defined within the “integer” TreinoDim, being the variable dTreinoDim its corresponding

“double”.

The code includes the implementation of momentum rate (Miranda, 2007), only for the second half of the
autoencoder, when the classic propagation is applied. The momentum rate (a) is specified in the variable

momRate.

The variable actFcnFlatness refers to the activation function flatness (Haykin, 1999). In this work this
variable is always defined with the value of 0.5 as this is the default value defined in the software MATLAB

for this variable.

The variables SatLimit and ThresholdSat are used in the Saturation procedure. It is possible to choose two

different initializations of the second part weights: a random initialization or the transpose matrix of the

LASCA Project — Final Report 128

final weights obtained in the first part. This choice is made by defining (uses the transpose matrix) or
commenting (uses the random initialization) the InicPesosTranspose variable. Next, Normalization variable
allows to choose between (i) when defined, the code normalizes both data sets (train data set and test data
set) by entry; (ii) when undefined, the code do not perform any normalization procedure. The variable
Weightslnitialization_PCA should be defined when the weights initialization (1** half) intended to be with
Principal Component Analysis (PCA). When not defined the weights are initialized randomly with uniform

distribution.

// #### Main Parameters Definition #i##

unsigned int numEpochs1 = 2000;

unsigned int numEpochs2 = 2000;

unsigned int Dimln = 24; // instances Dimension = first layer Dimension

double dDimln = 24.0;

unsigned int DimHidden = 12; // output Dimension = hidden layer Dimension
double dDimHidden = 12.0;

unsigned int DimOut = DimIn; // instances Dimension = output layer Dimension
double dDimOut = dDimin;

unsigned int TestDim = 500;

double dTestDim = 500.0;

unsigned int TrainDim = 1000; // Numbers of instances/examples in train set
double dTrainDim = 1000.0;

double momRate = 0.0; //momentum coef

double actFcnFlatness = 0.5; // For Activation Function

double SatLimit=0.9; //o valor da func¢do de activacdo a partir do qual se considera saturado

double ThresholdSat=0.3; //a percentagem maxima permitida de valores saturados a partir da qual se faz

uma perturbagdo aleatdria aos pesos

// #### Define Inicializacdo dos pesos da 22metade

LASCA Project — Final Report 129

#define InitWeightsTranspose // use Transpose Matrix

// if this is undefined, we have Random Matrix

// #### Define normalization of the data sets
#define Normalization // if this is undefined do nothing;

// if this is defined, do the normalization by entrance

// #### Define Pesos Iniciais
#define Weightslnitialization_PCA //do PCA Initialization of Weights1;
// if this is undefined, do the Random Weights1 Initialization

// ### End of Main Parameters Definition ######

Random numbers generators

The code uses the boost libraries (see www.boost.org) to define two functions that generate random
numbers. The function aux_aleat(rng) generates uniform real numbers between the interval [0,1], the

function aleat(rng) generates uniform realm numbers between the interval [-1,1].
//##### random functions definition ####

boost::random::mt19937 rng;

boost::random::uniform_real_distribution<> aux_aleat(0,1);
boost::random::uniform_real_distribution<> aleat(-1,1);

//#### END of random functions definition ####

Randomizing the instances in train data set

The train data is a set of instances, or particles (each instance has the same size as the first layer of the
autoencoder). The order in which the particles are covered is defined randomly (but the same order is used
in every comparison of different methods, as the random seeds considered are the same). To create this
random instance selection, the vector indices is created, which contains different integer numbers between

0 and TreinoDim, and is further used to address the instances position on the train set.

// ##t## Randomize TrainSet #it#H#H##H

LASCA Project — Final Report 130

rng.seed(3578);

vec RandPosition(TrainDim);

for (unsigned int i=0; i<TrainDim;i++)
[RandPosition(i) = aux_aleat(rng);]

uvec indices = sort_index(RandPosition);

// ##### END Randomize TrainSet #it###

Reading data from a csv file

The code reads two csv files: the train data set and the test data set. The code used to read both files is
similar. This way, a provisional matrix is created (ordered_TrainSet) which contains all train instances
organized in the same order as the input file. A new matrix is created, the TrainSet (the one going to be
applied in the further calculations). This matrix reads the information of the ordered_TrainSet matrix using

the indices vector to organize the instances.
//#it##H Reading Training Data from csv file #iHHi#H#
ifstream indata;
double f;
string s="";
mat TrainSet(TreinoDim,DimlIn); // train set matrix
mat ordered_TrainSet(TreinoDim,DimIn); // train set matrix
indata.open("NovoTipoAC_1.csv");
if(lindata) [cerr << "Error: file could not be opened" << endl; exit(1);]
vector < double > auxiliar;
while(getline(indata, s, ';'))
[
stringstream fs(s);

fs >>f;

auxiliar.push_back(f);

LASCA Project — Final Report 131

for(unsigned int k=0; k<TreinoDim; k++)
[
for (unsigned int j=0; j<Dimlin; j++)
[ordered_TrainSet(k,j) = auxiliar[(k*DimIn+j)];]
]
indata.close();

(DATA NORMALIZATION BLOCK — See next Section)

for(unsigned int k=0; k<TreinoDim; k++)
[

for (unsigned int j=0; j<DimIn; j++)

[TrainSet(k,j) = norm_ordered_TrainSet(indices(k),j);]
]
ordered_TrainSet.clear();
norm_ordered_TrainSet.clear();

//##### END Reading Training Data from csv file #it###

Analogously, the matrix TestSet is created, which contains a set of instances to assess the best number of
epochs to train the autoencoder. There is no need to randomize the instances of the test data set, since
they will not influence the train, and the error measured is not changeable with their order (this matrix is

used only after the training is complete).

Data Normalization

When the variable Normalization is defined, the code will perform the normalization by entry. Since the

new range is [—1, 1] (according to the activation function), the first step is obtain the original range by

LASCA Project — Final Report 132

entrance. In that way, min_train is the vector that contains the minimum of original data

(ordered_TrainSet) by column and max_train is the vector that contains the maximum by column.

ordered_TrainSet = train data set from csv file (dim = TrainDim x DimIn)
min_train = minimum value by columns of data matrix ordered_TrainSet (dim = 1 x Dimin)

max_train = maximum value by columns of data matrix ordered_TrainSet (dim = 1 x DimIn)

The normalization by column(j) is done using the corresponding minimum and maximum value, this is,

using min_train(j) and max_train(j).

// #itt### Data normalization ##t##

#ifdef Normalization //performs the normalization by entrance
rowvec max_train = max(ordered_TrainSet,0);

rowvec min_train = min(ordered_TrainSet,0);

mat norm_ordered_TrainSet(TrainDim,DimIn);

for(unsigned int tr=0; tr<TrainDim; tr++)

[

for (unsigned int in=0; in<DimIn; in++)

[norm_ordered_TrainSet(tr,in)=(2*ordered_TrainSet(tr,in)-max_train(in)-min_train(in))/(max_train(in)-

min_train(in));]

]

#endif

//##### End Data normalization ##t###

Similar code and description for test data set, aux_TestSet, normalization with correspondent minimum

min_test and maximum max_test.

Learning Coefficient and seed loops

There are three main loops: for each combination of i) learning coefficient 1, ii) learning coefficient 2 and

iii) seed, an autoencoder is created. Since the learning coefficients were specified with vectors, the two

LASCA Project — Final Report 133

loops concerning learning coefficients relate to the position of learnCoeff vector to use. In the further
example the same learnCoeff vector is used for both NN parts, meaning that all combinations of the
learning coefficients included in that vector are to be tested. Nevertheless different combinations may be

tested, using distinct vectors for the first and second parts.
for (unsigned int v=0; v<DimLC1; v++)
[
for (unsigned int p=0; p<DimLC2; p++)
[
Detailed_Output file
for(unsigned int seed=800; seed<850; seed+=5)
[
// #it## Main Parameters Definition ######
double IrCoeffl = learnCoeffl[v];
double IrCoeff2 = learnCoeff2[p];
// #it#t# End of Main Parameters Definition #####
Next sub-sections: i) Weights initialization, Bias initialization, etc.
] //end of seed loop
] //end of learning coefficient 2 loop
]1//end of learning coefficient 1 loop

The next sub-sections describe what is included within these three main loops.

Weights (1st Half) initialization

The weights of the first part of the autoencoder can be initialized with PCA or random numbers. These
weights are created within a matrix, the Weights1 (for first part) and Weights2 (for second part) matrices
(dimension of Dimin x DimOut, DimOut x Dimin, respectively). Matrices prev_Weightsl and
prev_Weights2 (dimension of Dimin x DimOut, DimOut x Dimin, respectively) of weights are defined to

store in each epoch the weights of the previous epoch, for first and second part, respectively.

LASCA Project — Final Report 134

PCA

PCA initialization is stored before loops related with learning coefficient and seed. Matrix Coeff_PCA store
the coefficients of the principal components of train set, TrainSet, using PCA function defined before, that
performs the Principal Components Analysis. In that method, Weightsl stores, in its initialization, the

coefficients of first DimHidden principal components. Weights2 is defined as the transpose of Weights1.
// PCA

#ifdef Weightslnitialization_PCA

mat Coeff_PCA(DimlIn,DimIn);

mat Weights1(DimIn, DimHidden);

mat Weights2(DimHidden, DimIn);

Coeff_PCA = PCA(TrainSet, Dimin);

Weights1 = Coeff PCA.submat(span(), span(0, DimHidden-1));
Weights2 = trans(Weights1);

#endif

// END PCA

Random

The random numbers are repeatable for every experiment, as the seed used is defined in the third main

loop (and this information is stored in the general results file as well).
mat prev_Weights1(DimIn,DimHidden); prev_Weights1.zeros();
[/#it#H#H Weights1 Inicialization ###H#
mat Weights1(DimIn,DimHidden);
rng.seed(seed);
for (unsigned int in=0; in<DimIn; in++)
[
for (unsigned int hid=0; hid<DimHidden; hid++)

[Weightsi(in,hid) = aleat(rng);]

LASCA Project — Final Report 135

//#####H End of Weights1 Inicialization ##H###

Bias (1st Half) initialization

The bias of the first half of the NN are always initialized with random numbers, using the aleat(rng)
function. The vector Biasl (dimension DimHidden) stores the bias values for each epoch, the vector

prevBiasl (dimension DimHidden) stores the Bias values of the previous epoch (initialized with zeros).
//#i## Bias1 Inicialization ##t###

vec Bias1(DimHidden);

vec prevBias1(DimHidden); prevBiasl.zeros();

for (unsigned int hid=0; hid<DimHidden; hid++)

[Bias1(hid) = aleat(rng);]

//#i#### End of Biasl Inicialization ##t###

Calculating Hidden matrix

Once the matrix Weights1 and the vector Bias1 are initialized, the model estimates the respective hidden
instances (for the first part of the NN). This way, all train instances contained in TrainSet are transformed
and stored in the matrix HiddenTrain (dimension TrainDim x DimHidden). For each exit neuron, an induced

local field is calculated with an auxiliary variable aux1, according to eq. R5/(49).

DimIn
Vi = Z WgiXi + bk
i=1
Or eq. R5/(49)
DimiIn
netk = Z Wi Xi + bk
i=1

In expression eq. R5/(49), the induced local field v, for an exit neuron k is defined as the sum of all outputs
from the previous layer (x;) multiplied with the respective weights linked to neuron k (wy;), and the bias
weight associated with the neuron k (by). For further theoretical information, see (Haykin, 1999, pp. 34-36).
This induced local field is then applied to the activation function previously defined, using the function

actFen (v, actFenFlatness).

//#####H Hidden Matrix == FeedForward Step #####

LASCA Project — Final Report 136

mat HiddenTrain(TrainDim,DimHidden); //cria matriz de HiddenTrain de (Dimlnensao padrdes X

tamanhoOutput)
double aux1 =0.0;
for (unsigned int tr=0; tr<TrainDim; tr++)
[
for(unsigned int hid=0; hid<DimHidden;hid++)
[
for(unsigned int in=0; in<DimIn;in++)
[aux1 += ((TrainSet(tr,in))*Weights1(in,hid));]

HiddenTrain(tr,hid) = actFcn(aux1 + Bias1(hid), actFcnFlatness); aux1 = 0.0;

]

//#####H End of Calculating Hidden Matrix #####

Estimating the sigma value

The ITL methods used in these autoencoders need an estimation of the sigma value to be adopted. In this
part of the model, the variable sig2 is calculated, which is the estimation of g2, to be used in the further
calculations. This sigma is calculated with base on the first HiddenTrain matrix, and is used in all epochs of

the first part. This estimation follows the Silverman’s Rule for the multivariate case (Silverman, 1986).
//#i#iH Sigma Calculation #it##

// Sigma Calculation By Silverman's Rule

// Silverman, 1998 (First Edition 1986), page87

vec meane (DimHidden); vec meane2 (DimHidden);

meane.zeros(); meane2.zeros();

for (unsigned int tr=0; tr<TrainDim; tr++)

[

for (unsigned int hid=0; hid<DimHidden; hid++)

LASCA Project — Final Report 137

meane(hid) += HiddenTrain(tr,hid)/dTrainDim;

meane2(hid) += HiddenTrain(tr,hid)*HiddenTrain(tr,hid);

]

double aux2 = 0.0;
for (unsigned int hid=0; hid<DimHidden; hid++)

[aux2 += meane2(hid)/(dTrainDim-1.0) - meane(hid)*meane(hid)* dTrainDim/(dTrainDim-1.0);//sum of

marginals variance]

double sdev = aux2 / (dDimHidden);

double Ak = pow((4.0/(dDimHidden+2.0)), 1.0/(dDimHidden+4.0));

double h_opt = Ak * pow(static_cast<double> (dTrainDim), -1.0/(dDimHidden+4.0));
double sig = sqrt(sdev) * h_opt;

double sig2 = sig*sig;

[/ End of Sigma Calculation ##H###

Maximum Learning Coefficient Calculation

The learning coefficient should respect the threshold defined in eq. R5/(50), where 7, is the learning
coefficient for the first part of the NN, and Ay 4x is the maximum eigenvalue obtained from the variance

and covariance matrix of the train data (Hagan et al., 1996).

1
N < X Ao eq. R5/(50)
MAX

This threshold is calculated in the model and stored in the variable Max_IrCoeffl. A detailed overview on
this topic is provided in Hagan et al. (1996, pp. 9-6).
[/t Maximum Learning Coefficient Calculation #i###

// CRITERIUM: IrCoeff < 1/ 2*lambdaMax

// cov = 1/(n-1) sum((xi-xm)(xj-xm))

LASCA Project — Final Report 138

mat C1(DimIn,DimIn); //, C2(DimIn,DimIn);
C1 = cov(TrainSet,TrainSet);

vec eigvall = eig_sym(C1);

double lambdal = max(eigvall);

double Max_IrCoeffl =1.0 / (2.0*¥lambdal);

[/t End of Maximum Learning Coeficient Calculation #it###

Cost functions variables

Two variables are initialized before the epochs 1 loop: the Prev_CostFn variable (initialized with zero) that
stores the cost function value of the previous epoch, and the CostFn variable (initialized with a big number)
that stores the cost function calculated in each epoch. These two variables are needed outside the epochs
1 loop, as they are further used to assess the stop criteria and to define the adaptive evolution of the

learning coefficient 1.
double Prev_CostFn = 0.0;

double CostFn = 100000.0;

Epochs loop (first part)

The epochs loop is declared as follows. The next sub-sections detail the processes that are included within

this loop.
for (unsigned int epoch=0; epoch<numEpochsl; epoch++)

/7.

Declaring variables

Declaration of the auxiliary vectors y_i, and y_j that will store the instances under assessment over the next

loops, and the auxiliary vector dij that will store the divergence between the instances under assessment.
//#it###H BackForward Step == MaxE Criterium ####
vec y_i(DimHidden), y_j(DimHidden), dij(DimHidden);

double Vij_out;

LASCA Project — Final Report 139

Traveling over the instances

So far, all the code presented was shaded with grey, as it is common for all ITL methods. At this point, we
will introduce “Back Forward Step” block code shaded with four colors, each one referring to an ITL model.

The theoretical detail of these processes can be consulted at section 3 of this report, for each ITL method.

Table R5/ 3 — Color code adopted for each ITL method.

MaxE

MaxMI_CS

MaxMI_ED

MinMI_CS_Uni

MaxE sub-code

Declaration of the auxiliary vectors y_i, and y_j that will store the instances under assessment over the next
loops, and the auxiliary vector dij that will store the divergence between the instances under assessment.
Declaration of the Vij_out constant that will store the value of the Gaussian of the output neurons in
hidden layer, G(yl- - Yj 2021). Also, the declaration of the matrix aux_deltas that will store the value of

the total variation in weights into that moment.

The next two loops (unsigned int i and j variables) cross the instances by pairs. In the third loop (unsigned
int hid), (for each output neuron, this is each component of vectors), the calculation of y_i (instance i), y_j

(instance j) and dij vectors are concretized.

Vij_out calculation is made based on Vij function (= G(yi - yj,2021)). Declaration of matrix
delta_weightsl that will store the weights’ modifications (at first part of autoencoder). The loop over
DimHidden (unsigned int hid) calculates new weights and bias for each output neuron. For that, derivatives
of activation function for instance i are stored at variable derv_i, using the DervActFcn function. From

expressions eq. R5/(11) and eq. R5/(12):

0 La—
v =) [RITE

i=1 ow
TG dy; 1 iv p (ay; aneti>
2w N20? ¢ 4) onet; dw
]=

LASCA Project — Final Report 140

So, in analogy with theory below,

dyi

derv_i=
= Onet;

error_i = F; - 0y = —;Z Viid;; |-derv_i
- ! Onet; N2g2 /4, V™Y -

The loop over Dimin (unsigned int in) identifies the weight associated to each combination of hidden

neuron (unsigned int hid) and input neuron (new weights and bias in). For each weight identified in this

loop, momentum term is calculated (despite momRate parameter defined equal to zero). Then

delta_weights1 is calculated according to expression eq. R5/(3):

av
delta_weights1l = Aw;, pig =7 EP + momterm
in,hid

net;

From the former equations, the ratio is the only component to be calculated. Considering the

Win,hid

definition of net; in expression eq. R5/(49), follows that:

onet; . .
——— = x;, = TrainSet(i, in).
0win,hid

So,

delta_weights1 = + momterm

n
O0Win hid

=n Z l- + momterm
awm hid

dy; Onet;

delta_weights1(in, hid) =7 - F; - () + momterm

aneti a(l)in‘hid

. Onet;
=n-error_l-——— + momterm
Win,hid

=7 -error_i- TrainSet(i,in) + momterm

In same loop, for each weight, aux_deltas (a control variable) is updated as the sum of latest
delta_weightsl; prev_Weightsl is set equal to the actual weights (from the last epoch) and Weightsl is a

matrix of new weights that sums to the latest weights their variations (delta_weights1).

LASCA Project — Final Report 141

Outside of this loop, i.e., only considering the loop in hid (hidden neurons), identical process is done for
update bias value. The variable prevBiasl stores the last bias (previous epoch) and Bias1 stores the bias
values corresponding to the actual epoch. The values of Biasl are updated by adding to previous bias

values the bias variation. This reasoning is similar for both halves of the autoencoder.
Bias1(hid) = prev_Bias1(hid) + Abp;4

(At code, this equation is equivalent to Bias1 += Aby;4)

av
Abpig =1 35 + momterm = 7 error_i + momterm
J

To ensure that the model minimizes the information potential, the negative sign (-1) is multiplied to the

calculation of delta_weights1 and Bias1.

for (unsigned int i=0; i<TrainDim; i++) //loop over instance i (Cross samples)
[
for (unsigned int j=0; j<TrainDim; j++) //loop over instance j (Cross samples)
[
for(unsigned int hid=0; hid<DimHidden; hid++) //for each neuron within hidden layer
[
y_i(hid) = HiddenTrain(i,hid); //instance i extraction
y_j(hid) = HiddenTrain(j,hid); //instance j extraction
dij(hid) = y_i(hid) - y_j(hid); // the difference bettween instances i and j
|
Vij_out = Vij_function(dij, DimHidden, sig2); // Vij = G(yi-yj, 2sig"2)

// dv/Dw = dV/dyi * dyi/dw
mat delta_weights1(DimIn,DimHidden);
for(unsigned int hid=0; hid<DimHidden; hid++) //for each output neuron: derivative
[
// Act Function Derivative @ Y_y
double derv_i = DervActFcn(y_i(hid), actFcnFlatness); //novo nome
//dV/dyi = dij[hid] * Vij_out * (-1.0/(2.0*sig2*TrainDimIn*TrainDimIn))
double error_i = dij(hid) * Vij_out * (-1.0/(2.0*sig2*dTrainDim*dTrainDim))*derv_i; //novo nome

//dyi/dw = derv_ActFn_t * x_t

for (unsigned int in=0; in<DimIn; in++)

[
double momterm = momRate * (Weights1(in,hid) - prev_Weights1(in,hid)); //momentum term
delta_weightsi(in,hid) = (MM * (-1.0) * IrCoeff1 * (error_i * TrainSet(i,in))) + momterm ; //MaxE = Min IP
prev_Weights1(in,hid) = Weights1(in,hid);
Weights1(in,hid) += delta_weights1(in,hid);

|

prevBias1(hid) = Bias1(hid);

Bias1(hid) += (MM * (-1.0) * IrCoeffl * (error_i)) + (momRate * (Bias1(hid) - prevBias1(hid)));

|
MaxMlI_CS sub-code

Before entering within the loop over the epochs for the first half, it is necessary to perform some
calculations. According to equations for information forces and cost function calculation eq. R5/(30), eq.

R5/(32), eq. R5/(33), eq. R5/(34) and eq. R5/(37), we need to calculate the quantities Vi’j, Vg, v, Viy, VX,

VY and d;;, where x is the input instance and y is the resulting instance in hidden layer. As V%, V*, V* only

J i

depend on input values, its calculation is performed separately.

LASCA Project — Final Report 142

The code starts to declare the matrix Vij_x, that will store the Gaussian G(yl- — yj,ZJZI), as defined in
equation eq. R5/(26). Next, the vectors dij and Vi_x are declared (these vectores will store the divergence
between the instances under assessment and the average of Gaussians, according to eq. R5/(27),
respectively). The code proceeds with the initialization of the constants aux_vix, aux_vx (auxiliary
parameters for the construction of Vi_x and V_x) and V_x (that will store the quantity defined in equation

eq. R5/(28)).

The code proceeds with the initialization of three loops. The first two loops evolve over TrainDim (i and j,
referring to the instances dimension). The third loop evolves over Dimin (m referring to the input

dimention). Inside the third loop, the vector dij is calculated according to the definition dijx =X — Xj.

Vij_x is calculated based on Vij function function, for the cross of instances. aux_vix is the sum of all
component of matrix Vij_x. Only considering first loop, Vi_x is calculated based on aux_vix, which is
restarted every loop. Aux_vx is defined as the sum of all components of Vi_x. Outside loops, V_x is

calculated based on aux_vx.

// #it### Calculus Vij_inputs #iHH#
mat Vij_x(TrainDim,TrainDim);

vec dij(DimlIn), Vi_x(TrainDim);

double aux_vix = 0.0, aux_vx= 0.0, V_x=0.0;

for (int i=0; i<TrainDim; i++)
[
for (int j=0; j<TrainDim; j++)
[
for (int in=0; in<DimIn; in++)
[dij(in) = TrainSet(i,in) - TrainSet(j,in);]
//dij = TrainSet.row(i) - TrainSet.row(j);
Vij_x(i,j) = Vij_function(dij, DimIn, sig2);

aux_vix += Vij_x(i,j);

LASCA Project — Final Report 143

Vi_x(i) = aux_vix/dTrainDim;
aux_vix =0.0;
aux_vx += Vi_x(i);
]
V_x=aux_vx/dTrainDim;
// H#itt# End Calculus Vij_inputs #it###

Next, the sub-code for MaxMI_CS, inside the loop over Epochsl. Declaration of matrix Vij_y; vectors dij_y
and Vi_y; double aux_viy. That variables’ calculations are similar to Vij_x, dij_y, Vi_x and aux_vix but for

neurons at hidden layer, y.
// ##t### Calculus of Vij concerning the hidden layer #####
mat Vij_y(TrainDim,TrainDim);
vec dij_y(DimHidden), Vi_y(TrainDim);
double aux_viy = 0.0;
for (int i=0; i<TrainDim; i++)
[
for (int j=0; j<TrainDim; j++)
[
for (int hid=0; hid<DimHidden; hid++)
[
dij_y(hid) = HiddenTrain(i,hid) - HiddenTrain(j,hid);
]
Vij_y(i,j) = Vij_function(dij_y, DimHidden, sig2);
aux_viy += Vij_y(i,j);
]

Vi_y(i) = aux_viy/dTrainDim; aux_viy = 0.0;

LASCA Project — Final Report 144

// ##### End of Calculus of Vij concerning the hidden layer #####

To calculate the information force quantity in equation eq. R5/(35), we divide the calculation by steps

according next formula:

F 1 [Nl Nz, N3] d Rs/(51)
= — | — _— R .= , — . eq.
i~ T N2gz|p1 D2 “p3) G TYiTYi a
Where,
— y _ y — y
N1 = Z ViVidi, N2 = z Vijdij, N3 = 2 ViViidy; eq. R5/(52)
7 7 j
_ y _ y _ y
D1 = Z ViVij. D2= Z Vij, D3= Z /i eq. RS/(53)
T 5 T 5 7

In next code block, “Auxiliares no Calculo Parcela 1 e 2: D1 e D2”, declaration and calculation of aux_vj and

aux_vm auxiliary variables are done. These variables will help the D1 and D2 calculation.
// ###t# Auxiliares no Calculo Parcela 1 e 2: D1 e D2 ##t##
double aux_vj = 0.0, aux_vm = 0.0;
for (int i=0; i<TrainDim; i++)
[
for (int j=0; j<TrainDim; j++)
[
aux_vj += Vij_x(i,j) * Vij_y(i,j);

aux_vm += Vij_y(i,j);

]

// ##### Fim Auxiliares no Calculo Parcela 1 e 2: D1 e D2 #####

Inside “BackForward Step == MaxMI_Cauchy-Swartz Criteria” Block there are the declarations of next
variables: vectors y_i, y_j, Fi, dij, auxN1, auxN2, auxN3, N1, N2, N3; doubles Vij_out, D1, D2, D3. y_i and

y_j will store output neurons for instance i e j, respectively. dij is the divergence d;; = y; — y;, Fi will store

LASCA Project — Final Report 145

the information force according to eq. R5/(51). aux_N1, aux_N2, aux_N3 will help on N1, N2 and N3
calculations according to eq. R5/(52). Declaration of matrix delta_weightsl inside instance j loop. This
matrix will store the variation on weights (for the first part of the autoencoder). Next loop, k, we have the
vector Fi calculation according to eq. R5/(51). Then, according to eq. R5/(11) and explanation above (at

MaxE sub-code), we derive update for weights and bias at first part of autoencoder. This method is

equivalent to maximize Information Potential. As we want maximize, learning rate should be positive. As
IrCoeffl was defined in the beginning of code as a positive parameter, we multiply the delta_weights1

formula by constant (1.0).
/ /it BackForward Step == MaxMI_Cauchy-Swartz Criterium #tt
vecy_i(DimHidden), y_j(DimHidden), Fi(DimHidden);

vec dij(DimHidden), auxN1(DimHidden), auxN2(DimHidden), auxN3(DimHidden), N1(DimHidden),
N2(DimHidden), N3(DimHidden);

double Vij_out;

double D1=0.0, D2=0.0, D3=0.0;
D1 =aux_vj;

D2 =aux_vm;

N1.zeros(), N2.zeros(), N3.zeros();

for (unsigned int i=0; i<TrainDim; i++) //Cross samples: sample t
[
for (unsigned int j=0; j<TrainDim; j++) //Cross samples: sample s
[
for(unsigned int hid=0; hid<DimHidden; hid++) //for each output neuron
[
y_i(hid) = HiddenTrain(i,hid);
y_j(hid) = HiddenTrain(j,hid);
dij(hid) = y_i(hid) - y_j(hid);
[/ HitHH dMI/dyi = Fi

LASCA Project — Final Report 146

// Principe Tutorial pp.25 Eq.28
auxN1(hid) = Vij_x(i,j) * Vij_y(i,j) * dij(hid);
auxN2(hid)= Vij_y(i,j) * dij(hid);
auxN3(hid) = Vi_x(j) * Vij_y(i,j) * dij(hid);
]
N1 +=auxN1;
N2 += auxN2;
N3 += auxN3;
D3 +=Vi_x(j) * Vi_y(j);
]
/[i dMI/Dw = dMI/dy * dy/dw HitHHEHEH
mat delta_weights1(DimIn,DimHidden);
for(unsigned int hid=0; hid<DimHidden; hid++) //for each output neuron: derivative
[
Fi(hid) = -1.0/(dTrainDim*dTrainDim * sig2) * (N1(hid)/D1 + N2(hid)/D2 - 2.0*N3(hid)/D3);
//Derivative of ACTIVATION FUNCTION @ Y_s
double derv_i = DervActFcn(y_i(hid), actFcnFlatness);
//dMI/dyi = Fi
//dy/dw = derv_ActFn_t * x_t - derv_ActFn_s * x_s
for (unsigned int in=0; in<DimIn; in++)
[
double momterm = momRate * (Weights1(in,hid) - prev_Weights1(in,hid)); //momentum term

delta_weights1(in,hid) = (MM * (1.0) * IrCoeffl * Fi(hid) * (derv_i * TrainSet(i,in))) + momterm
;//MaxMl = Max (-log IP) = Min log IP

prev_Weights1(in,hid) = Weights1(in,hid);

LASCA Project — Final Report 147

Weights1(in,hid) += delta_weights1(in,hid);
]
prevBias1(hid) = Bias1(hid);

Bias1(hid) += (MM * (1.0) * IrCoeff1 * Fi(hid) * derv_i) + (momRate * (Bias1(hid) - prevBias1(hid)));

]

[/t End of BackForward Step == MaxMI_Cauchy-Swartz Criterium #it###
MaxMI_ED sub-code

Similarly to the CS method, the quantities Ci’j-, Vi’j, Vg, v, Viy, V¥, VY and d;; are calculated following eq.

R5/(39), eq. R5/(40) and eq. R5/(42), where x is an input instance and y is an hidden instance. As the

guantities Ci’j, Vi’j, V¥, V* depend only on the input values, the calculation of these measures is performed

outside the loop over epochs 1. Declaration of matrix Cij_x that will store Cj; = V;j — 2V + V*, by
definition; vectors xi, xj and dij that will store input instance i e j and the divergence between the instances
under assessment, respectively; The variables (double type) V, Vi, Vj, Vij are calculated according to eq.
R5/(26), eq. R5/(27) and eq. R5/(28), V is calculated based on V_function; Vj is calculated based on
Vi_function; Vij is calculated based on Vij_function; Vi is calculated based on Vi function; finally, Cij is

calculated based on its definition.

[/t Cij Calculation Hitt

// CALCULATE c_ij for input instances s and t
mat Cij(TrainDim, TrainDim);

double V, Vi, Vj, Vij;

vec xi(DimIn), xj(DimIn), dij(DimIn);

V =V_function(TrainSet, DimlIn, sig2, TrainDim);

for(unsigned int i=0; i< TrainDim; i++)

[

LASCA Project — Final Report 148

for(unsigned int in=0; in<DimIn; in++)

[xj(in) = TrainSet(i,in);//input of instance t]

Vj = Vi_function(TrainSet, xj, Dimin, sig2, TrainDim);

for (unsigned int j=0; j< TrainDim; j++)
[

for(unsigned int in=0; in<Dimln; in++)
[
xi(in) = TrainSet(j,in);//input of instance s
dij(in) = xi(in) - xj(in);
]
Vij = Vij_function(dij, Dimln, sig2);
Vi = Vi_function(TrainSet, xi, Dimln, sig2, TrainDim);

Cij(i,j) = Vij - Vi- Vj + V;

]

//##### End of Cij Calculation #####

Sub-code for MaxMI_ED, inside epochs loop, starts with declaration of vectors y_i, y_j and dij2; double
Vij_out; matrices delta_weightsl and aux_delta. Again, vectors y_i, and y_j will store the instances i and j
under assessment, and dij2 that will store the divergence between vectors bellow. Vij_out, calculated
based on Vij_function, will store the value of the Gaussian of the output neurons in hidden layer,
G(yi -Y 2021) and matrix aux_deltas will store the value of the total variation in weights (at first part of
autoencoder) into that moment. Next part of sub-code is similar to correspondent part of MaxE method.
New loop (unsigned int k) has implemented where, for each output neuron, the corresponding new
weights and bias will be calculated. For that, derivatives of activation function for instances i and j will be

stored at variables derv_i and derv_j based on DervActFcn function. From eq. R5/(40) and eq. R5/(41):

LASCA Project — Final Report 149

0 N dy;
_ — T 2L
——Ipp(X,Y) Z,zl[Fl] 2

N
0y; 1 dy; dnet;
R = -) vy ()
LF:] ow NZ2g2 = Ut onet; 0w
So, in analogy with theory bellow,
derv.s =22 and derv_t = Oye
dnetg dnet;
N
_ 0ys _ 1 y
error_s _Fs.anet =\ ~Nza2 CUVUd -derv_s
S =
N
—p 2 (L L NTyrg)
error_t = F; omet, ~NZg? 4 erv_t

]_

Loop at unsigned int i variable, identifies each weight by the output neuron (unsigned int k) and input
neuron (unsigned int i). For each weight in this loop, momentum term is calculated (despite momRate

parameter defined equal to zero). Then delta_weights1 is calculated according to eq. R5/(3):

av
delta_weights1l = Aw;; = n—— + momterm
(')a)i]-
From equations bellow, lack calculate a;‘l;t_s. From definition of net;, in eq. R5/(49), follows that:
SL
onets L . .
T a; = TrainSet(t,i).
So,

av
delta_weightsl =17 EP + momterm

=n Z - + momterm

dy; Onet,
dnet; Ow

delta_weights1(i, k) =n - F; - () + momterm

onet

t
=n-error_t: + momterm

=7 -error_t- TrainSet(t, i) + momterm

LASCA Project — Final Report 150

In same loop, for each weight, aux_deltas (a control variable) is updated as the sum of latest
delta_weights1; prev_Weightsl1 is set equal to the actual weights (from the last epoch) and Weights1 is a
matrix of new weights that sums to the latest weights their variations (delta_weights1). All these variables
concern to the weights at first part of autoencoder. Outside of this loop, i.e., only considering the loop in k
(output neurons), identical process is done for update bias value. The variable prevBiasl stores the last bias

(previous epoch) and variable Bias sums to the old bias component the new bias variation:
Bias1() = Bias1"~V + Ab;

(At code, this equation is equivalent to Bias1 += Ab;)

av
=N ———+ momterm = n - error_t + momterm

Ay =35

]

This method is equivalent to maximize Information Potential. As we want to maximize, the learning rate
should be positive. As IrCoeffl is defined in the beginning of code as a positive parameter, we multiply the

delta_weights1 formula by constant (1.0).

[/t BackForward Step == MaxMI Criterium ###t#
vecy_i(DimHidden), y_j(DimHidden), dij2(DimHidden);
double Vij_hid;

mat delta_weights1(DimIn,DimHidden);

for (unsigned int i=0; i<TrainDim; i++) //Cross samples: sample i
[
for (unsigned int j=0; j<TrainDim; j++) //Cross samples: sample j
[
for(unsigned int hid=0; hid<DimHidden; hid++) //for each output neuron
[
y_i(hid) = HiddenTrain(i,hid);
y_j(hid) = HiddenTrain(j,hid);
dij2(hid) = y_i(hid) - y_j(hid);
]

LASCA Project — Final Report 151

Vij_hid = Vij_function(dij2, DimHidden, sig2); // Vij = G(yi-yj, 2sig2)

// dV/Dw = dV/dy * dy/dw
for(unsigned int hid=0; hid<DimHidden; hid++) //for each output neuron: derivative
[

// Act Function Derivative @ Y_s

double derv_j = DervActFcn(y_j(hid), actFcnFlatness);

double derv_i = DervActFcn(y_i(hid), actFcnFlatness);

//dV/dy = dij[k] * Vij_out * (-1.0/(2.0*sig2*TrainDimIn*TrainDimlIn))
double error_j = dij2(hid) * Cij(i,j) * Vij_hid * (-1.0/(2.0*sig2*dTrainDim*dTrainDim))*derv_j;

double error_i = dij2(hid) * Cij(i,j) * Vij_hid * (-1.0/(2.0*sig2*dTrainDim*dTrainDim))*derv_i;

//dy/dw = derv_ActFn_t * x_t-derv_ActFn_s *x_s

for (unsigned int in=0; in<DimIn; in++)

[
double momterm = momRate * (Weights1(in,hid) - prev_Weights1(in,hid)); //momentum term
delta_weights1(in,hid) = ((1.0) * IrCoeffl * (error_i * TrainSet(i,in))) + momterm ;
prev_Weights1(in,hid) = Weights1(in,hid);
Weights1(in,hid) += delta_weights1(in,hid);

]

prevBias1(hid) = Bias1(hid);

Bias1(hid) += ((1.0) * IrCoeffl * (error_i)) + (momRate * (Bias1(hid) - prevBias1(hid)));

]

LASCA Project — Final Report 152

//##### End of BackForward Step == MaxMI Criterium #####

MinMI_CS_Uni sub-code

Before epochs loops, total_CostFn is declared and set to be equal to a big number (10000.0) in order to the
Learning Coefficient Adaptive Criteria do not cut the parameter Ircoeffl at first iteration/epoch;

prev_total_CostFn is declared and initialized equal to zero.
double total_CostFn = 10000.0, prev_total_CostFn = 0.0;

Sub-code for MinMI_CS_Uni starts with delta_weightsl declaration, as above will store variation on
weights and total_CostFn is now defined with value 0 and corresponds to quantity in eq. R5/(44). This
method applies the same approach as above, on MaxMI_CS case, but for the CS univariate case. This means
minimize MI between univariate variables, in that case, between each combination of 2 different neurons
of hidden layer. To do that we will cross output neurons in hidden layer (loop n and m) to calculate the
correspondent mutual information for this pair/combination. Second loop, m ranges between (n + 1) and
DimHidden because of MI symmetry. The variables used in this sub code are similar with the ones used on
MaxMI_CS method. Instead x be the input vector and y the hidden vector, in this case, x is one neuron at
the hidden layer and y is another one neuron at the hidden layer. For example, declaration of matrices
Vij_x and Vij_y will store matrices V;; (eq. R5/(26)) for active neuron x and neuron y in hidden layer;
declaration of vectors Vj_x and Vj_y (eq. R5/(27)) will store vector V; for active neuron x and neuron y in

hidden layer; etc.
// H#itt## Calculo Vij_saidas Hitt#H#
mat delta_weights1(DimIn,DimHidden);

delta_weights1.zeros();

total_CostFn = 0.0;

for (unsigned int n=0; n< DimHidden; n++)

[

for (unsigned int m=n+1; m< DimHidden; m++)

[

LASCA Project — Final Report 153

mat Vij_x(TrainDim,TrainDim), Vij_y(TrainDim,TrainDim);
vec Vj_x(TrainDim), Vj_y(TrainDim);
double aux_vjx = 0.0, aux_vjy = 0.0, dij_y = 0.0, dij_x=0.0;

double aux_V_x=0.0,aux V_.y=0.0,V_x, V_y;

for (unsigned int i=0; i<TrainDim; i++)
[
for (unsigned int j=0; j<TrainDim; j++)
[
dij_x = HiddenTrain(i,m) - HiddenTrain(j,m);

dij_y = HiddenTrain(i,n) - HiddenTrain(j,n);

Vij_x(i,j) = Vij_function(dij_x, 1, sig2);

Vij_y(i,j) = Vij_function(dij_y, 1, sig2);

aux_vjx += Vij_x(i,j);
aux_vjy += Vij_y(i,j);

]

Vj_x(i) = aux_vjx/dTrainDim;

Vj_y(i) = aux_vjy/dTrainDim;

aux_V_x+=Vj_x(i);

aux_V_y +=Vj_y(i);

aux_vjx =0.0;
aux_vjy = 0.0;

LASCA Project — Final Report 154

]
V_x=aux_V_x/dTrainDim;

V_y=aux_V_y/dTrainDim;

// ##### Fim Calculo Vij_saidas ###Ht#

[/ #i#i# Calculo Vj #itt##
double aux_vj = 0.0, aux_vmx = 0.0, aux_vmy = 0.0;
for (unsigned int i=0; i<TrainDim; i++)
[
for (unsigned int j=0; j<TrainDim; j++)
[
aux_vj += Vij_x(i,j) * Vij_y(i,j);
aux_vmx += Vij_x(i,j);

aux_vmy += Vij_y(i,j);

]

// ##### Fim Calculo Vj ##t##

[/t BackForward Step == MinMI_Cauchy-Swartz Criteria #it#
doublex_t=0.0,x s=0.0,y_t=0.0,y_s=0.0;

double Fi_x=0.0, Fi_y=0.0;

double N1_y=0.0, D1=0.0, N2_y=0.0, D2_x=0.0, D2_y=0.0, N3_y=0.0, D3=0.0;
double N1_x=0.0, N2_x=0.0, N3_x=0.0;

D1 = aux_vj;

D2_x =aux_vmx;

LASCA Project — Final Report 155

D2_y =aux_vmy;

dij_y=0.0, dij x=0.0;

for (unsigned int i=0; i<TrainDim; i++) //Cross samples: sample i
[
for (unsigned int j=0; j<TrainDim; j++) //Cross samples: sample j
[
x_t = HiddenTrain(i,m);//neuronio saida 1 patt i
x_s = HiddenTrain(j,m);//neuronio saida 1 patt
y_t = HiddenTrain(i,n);//neuronio saida 2 patt i

y_s = HiddenTrain(j,n);//neuronio saida 2 patt j

dij_x=x_t-x_s;

dij_y=y_t-y_s;

[/ HittH i dMI/dyi = Fi

// ver Principe Tutorial pag.25 Eq.28
N1_x+= Vij_x(i,j) * Vij_y(i,j) * dij_x;
N2_x +=Vij_x(i,j) * dij_x;

N3_x += Vj_x(j) * Vij_y(i,j) * dij_x;

N1_y += Vij_x(i,j) * Vij_y(i,j) * dij_y;
N2_y += Vij_y(i,j) * dij_y;
N3_y +=Vj_x(j) * Vii_y(i,j) * dij_y;
D3 += Vj_x(j) * Vi_y(j);

]

LASCA Project — Final Report 156

Fi_x =-1.0/(dTrainDim*dTrainDim * sig2)*(N1_x/D1 + N2_x/D2_x - 2.0*N3_x/D3);

Fi_y =-1.0/(dTrainDim*dTrainDim * sig2)*(N1_y/D1 + N2_y/D2_y - 2.0*N3_y/D3);

/[#HHHHH dMI/Dw = dMI/dy * dy/dw #iHHdHE#EHE

// Act Function Derivative @ Y_s
//double derv_s = DervActFcn(y_s, actFcnFlatness);
double dervx_t = DervActFcn(x_t, actFcnFlatness);

double dervy_t = DervActFcn(y_t, actFcnFlatness);

//dMI/dyi = Fi
//dy/dw = derv_ActFn_t * x_t - derv_ActFn_s * x_s
for (unsigned int in=0; in<DimIn; in++)
[
double momterm_x = momRate * (Weights1(in,m) - prev_Weights1(in,m)); //momentum term

double momterm_y = momRate * (Weights1(in,n) - prev_Weights1(in,n)); //momentum term

delta_weights1(in,m) = (MM * (1.0) * IrCoeffl * Fi_x * (dervx_t * TrainSet(i,in))) + momterm_x;

//Min Ml entre neuronios = Min (-log(V(y)) = Max log V(y)

delta_weights1(in,n) = (MM * (1.0) * IrCoeffl * Fi_y * (dervy_t * TrainSet(i,in))) + momterm_y;

prev_Weights1(in,m) = Weights1(in,m);

Weights1(in,m) += delta_weights1(in,m);

prev_Weights1(in,n) = Weights1(in,n);

Weights1(in,n) += delta_weights1(in,n);

LASCA Project — Final Report 157

]
prevBiasl(m) = Bias1(m);

prevBiasl(n) = Bias1(n);

Biasl(m) += (MM * (1.0) * IrCoeffl * Fi_x * dervx_t) + (momRate * (Bias1(m) — prevBias1(m)));

Bias1l(n) += (MM * (1.0) * IrCoeffl * Fi_y * dervy_t) + (momRate * (Bias1(n) — prevBiasl(n)));

]

//##### End of BackForward Step == MinMI_ED Criteria #####

Output matrix
When all instances (TrainDim instances) are “traveled”, and the respective cumulated change on weights
are complete (updated Weights1), a new output matrix is calculated, using the last changes performed on

the weights (Weights1).

//#it###H Update Hidden Matrix == FeedForward Step #iH#H#
mat prev_HiddenTrain (TrainDim, DimHidden);
prev_HiddenTrain = HiddenTrain;

double aux1 =0.0;

for (unsigned int tr=0; tr<TrainDim; tr++)
[
for(unsigned int hid=0; hid<DimHidden; hid++)
[
for(unsigned int in=0; in<DimIn; in++)
[aux1 += ((TrainSet(tr,in))*Weights1(in,hid));]
HiddenTrain(tr,hid) = actFcn(aux1 + Bias1(hid), actFcnFlatness);

auxl =0.0;

LASCA Project — Final Report 158

]

[/t End of Update Hidden Matrix #itt

Saturation Process

One way to avoid the network saturation is by randomly perturbation of neurons. This was made by
introducing a random perturbation in the weights. Next code implements this perturbation. Definition of
matrix aux_saturationl that identifies saturated elements of matrix HiddenTrain based on saturation limit
(SatLim). If an element in HiddenTrain matrix is higher, in modulus, that the saturation limit then
aux_saturationl stores in the corresponding place 1. For the non saturated elements stores 0. Definition of
variable aux_SatlLevell that sums all the elements of matrix aux_saturationl, giving the total of its
saturated elements. SatLevell is the percentage of saturated elements. If the network is saturated, this is,

if SatLevell is higher than a threshold value (ThresholdSat) then weights will be pertubated according to:
Whew = (random * W) + W eq. R5/(54)

The random number is defined as 0.1 * aleat(rng), where aleat(rng) generates uniform real numbers
between the interval [—1,1], so random is a uniform number between [—0.1,0.1]. This means that

weights suffer a perturbation of 10% into both directions.
[/t SATURATION process Hit#it#

mat aux_saturation(TrainDim,DimHidden); //auxiliary matrix to calculate the proportion of weigths within

saturation state (the weights the absoulte value higher than 0.9)

aux_saturation.zeros();

for (unsigned int tr=0; tr<TrainDim; tr++)

[

for(unsigned int hid=0; hid<DimHidden;hid++)

[

if (abs(HiddenTrain(tr,hid))>=SatLimit)

[

LASCA Project — Final Report 159

// the matrix with “1” for the corresponding positions of saturated weights (for an absolute specified value,

e.g. 0.9)
aux_saturation(tr,hid) =1;
]
else

[aux_saturation(tr,hid) =0;]

]

double aux_SatLevel=accu(aux_saturation); //retorna a soma acumulada de todos os elementos que estdo

contidos dentro da matrix auxiliar

double SatLevel=aux_SatLevel/(dTrainDim*dDimHidden); //retorna a percentagem de weights 1 que estdo

saturados

if(SatLevel>ThresholdSat)
[
for(unsigned int hid=0; hid<DimHidden;hid++)
[
for (unsigned int in=0; in<DimIn; in++)
[Weights1(in,hid) = 0.1*aleat(rng)*Weights1(in,hid)+Weights1(in,hid);]
Bias1(hid) = 0.1*aleat(rng)*Bias1(hid)+Bias1(hid);
]
aux1 =0.0;
for (unsigned int tr=0; tr<TrainDim; tr++)
[
for(unsigned int hid=0; hid<DimHidden;hid++)

[

LASCA Project — Final Report 160

for(unsigned int in=0; in<DimlIn;in++)
[aux1 += ((TrainSet(tr,in))*Weights1(in,hid));]
HiddenTrain(tr,hid) = actFcn(aux1 + Bias1(hid), actFcnFlatness);

aux1 =0.0;

]

[[#i#t##H#H#E END SATURATION process ###HHt

Cost function
The goal of this work is training a neural network maximizing or minimizing some cost functions. Next,
there are the cost functions for the different ITL methods.
MaxE Cost Function
For this method, the goal is maximize the entropy. So Entropy, according to eq. R5/(14), is the cost
function.
L N N
CostFunction = —log FEZ G(y; —yj,20°1) eq. R5/(55)

i=1j=1

The code is the direct calculation of this formula, where dij3 =y; —y; and tFn = P 27:1 G(yi -
y;,20%1).
[/t Calculating Cost Function for this Hidden Matrix #it###
double aux_CostFn = 0.0;
vec dij3(DimHidden);
for (unsigned int i=0; i<TrainDim; i++)
[
for (unsigned int j=0; j< TrainDim; j++)
[

for (unsigned int hid=0; hid< DimHidden; hid++)

LASCA Project — Final Report 161

[dij3(hid) = HiddenTrain(i,hid) - HiddenTrain(j,hid);]

aux_CostFn += Vij_function(dij3, DimHidden, sig2);

]

Prev_CostFn = CostFn;
CostFn =-log10 ((1.0 / (pow(dTrainDim,2.0))) * aux_CostFn);

[/t End of Calculating Cost Function for this Hidden Matrix #i##

MaxMI_CS Cost Function

The cost function for this method is the Cauchy-Schwartz Mutual Information estimation, according eq.

R5/(37). In that way,

(2 S 2 Vv v

(vww)

1 1
= log mz VAV | +1og(V¥V?Y) — 2 x log (ﬁzVi"W)
i j i

CostFunction = log

eq. R5/(56)

Where,
dij_CF_y = y; — y; = HiddenTrain(i, k) — HiddenTrain(j, k)
Vij CFy =V}
ViCFy=V
VCFy=VY

1
NZ
i J

— y
VJ_CF = —z ViV

VM_CF =V*VY

1
VC_CF = (ﬁz 78%4 >
i

So, cost function becomes:

LASCA Project — Final Report 162

CostFunction = log(VJ_CF) + log(VM_CF) — 2 x log(VC_CF) eq. R5/(57)

[/ #tHa###H Calculating Cost Function for this Output ###iHtHiH

double aux_CostFn =0.0, aux_Vi_CF_y=0.0,aux_V_CF_y=0.0,V_CF_y=0.0;
mat Vij_CF_y(TrainDim,TrainDim);

vec Vi_CF_y(TrainDim);

vec dij_CF_y(DimHidden);

for (unsigned int i=0; i<TrainDim; i++)
[
for (unsigned int j=0; j<TrainDim; j++)
[
for (unsigned int hid=0; hid<DimHidden; hid++)
[dij_CF_y(hid) = HiddenTrain(i,hid) - HiddenTrain(j,hid);]
Vij_CF_y(i,j) = Vij_function(dij_CF_y, DimHidden, sig2);
aux_Vi_CF_y +=Vij_CF_y(i,j);
]
Vi_CF_y(i) = aux_Vi_CF_y / dTrainDim;
aux_V_CF_y +=Vi_CF_y(i);
]
V_CF_y=aux_V_CF_y/ dTrainDim;
double aux_VJ_CF =0.0, aux_VC_CF =0.0;

double VJ_CF=0.0, VM_CF=0.0, VC_CF=0.0; //the 3 parts of the cost function: joint, marginal and cross

information potentials

for (int i=0; i<TrainDim; i++)

LASCA Project — Final Report 163

for (int j=0; j<TrainDim; j++)
[aux_VJ_CF += Vij_x(i,j) * Vij_CF_y(i,j);]
aux_VC_CF +=Vi_x(i) * Vi_CF_y(i);
]
VJ_CF = aux_VJ_CF / (dTrainDim*dTrainDim); //the argument for the joint information potential
aux_VJ_CF=0.0;
VM_CF=V_x * V_CF_y; //the argument for the marginal information potential
VC_CF = aux_VC_CF / (dTrainDim); //the argunment for the cross information potential
aux_VC_CF=0.0;
Prev_CostFn = CostFn;
CostFn = (log(VJ_CF) + log(VM_CF) - 2.0*log(VC_CF)); //the complete information potential

[/ #tHE#### End of Calculating Cost Function for this Output ######H#H#H##

MaxMI_ED Cost Function

For Euclidean Distance Mutual Information estimation, the cost function according to eq. R5/(43), is:

N N
) 1
CostFunction = mz Z Cl-’j- Vg eq. R5/(58)

Where Ci’j- was calculated before epochs loop and Vg = Vij_function(dij3, DimHidden, sig2) is calculated

with updated variable dij3 (using the new output matrix HiddenTrain)
//#it### Calculating Cost Function for this Output #####

double aux_CostFn = 0.0;

vec dij3(DimHidden);

for (unsigned int i=0; i<TrainDim; i++)

[

for (unsigned int j=0; j< TrainDim; j++)

LASCA Project — Final Report 164

for (unsigned int hid=0; hid<DimHidden; hid++)
[dij3(hid) = HiddenTrain(i,hid) - HiddenTrain(j,hid);]

aux_CostFn += Cij(i,j) * Vij_function(dij3, DimHidden, sig2);

]

Prev_CostFn = CostFn;
CostFn = (1.0 / (pow(dTrainDim,2.0))) * aux_CostFn;

[/t End of Calculating Cost Function for this Output #it###

MinMI_CS_Uni Cost Function

For this method, the cost function is the same as the MaxMI_CS. But in that case, Ml is calculated between
neurons of the hidden layer, instead input vector and hidden vector as in case of method MaxMI_CS. To do

that, same adjustments need to be done. The quantities V¥ v Vl-x, Viy, VX, VY and dl-j corresponds now

ijr Vijr
to the combination of neurons. This is, x = neuron n and y = neuron m. For this reason, these quantities
will be calculated inside loops n and m (neurons combinations) based on updated neurons (HiddenTrain).
“Calculating Cost Function for this HiddenMatrix” block corresponds to the direct calculation of cost
function presented in eq. R5/(57), in MaxMIN_CS for each combination of neurons in hidden layer. In this

method cost function will correspond to the summation of each MI of combination of neurons, the

total_CostFn that want to be minimized, see eq. R5/(43).

CostFunction; = log(VJ_CF) + log(WM_CF) — 2 = log(VC_CF) eq. R5/(59)
sa-1

TotalCostFunction = Z CostFunction; eq. R5/(60)
i=1

prev_total CostFn =total _CostFn;
/[#ittH##### Calculating Cost Function for this HiddenMatrix ##t###H####

for (unsigned int n=0; n< DimHidden; n++)

LASCA Project — Final Report 165

for (unsigned int m=n+1; m< DimHidden; m++)

[
mat Vij_x(TrainDim,TrainDim), Vij_y(TrainDim,TrainDim);
vec Vj_x(TrainDim), Vj_y(TrainDim);
double aux_vjx = 0.0, aux_vjy = 0.0, dij_y = 0.0, dij_x=0.0;

double aux_V_x=0.0,aux_V_y=0.0,V_x, V_y;

for (unsigned int i=0; i<TrainDim; i++)
[
for (unsigned int j=0; j<TrainDim; j++)
[
dij_x = HiddenTrain(i,m) - HiddenTrain(j,m);

dij_y = HiddenTrain(i,n) - HiddenTrain(j,n);

Vij_x(i,j) = Vij_function(dij_x, 1, sig2);

Vij_y(i,j) = Vij_function(dij_y, 1, sig2);

aux_vjx += Vij_x(i,j);
aux_vjy += Vij_y(i,j);

]

Vj_x(i) = aux_vjx/dTrainDim;

Vj_y(i) = aux_vjy/dTrainDim;

aux_V_x+=Vj_x(i);
aux_V_y +=Vj_y(i);

LASCA Project — Final Report 166

aux_vjx =0.0;

aux_vjy =0.0;
]
V_x=aux_V_x/dTrainDim;
V_y=aux_V_y/dTrainDim;

// t##### Fim Calculo Vij_saidas ja com update #iHtt

//#it### Calculating Cost Function for this HiddenMatrix #itt##
double aux_VJ_CF = 0.0, aux_VC_CF = 0.0, CostFn = 0.0;

double VJ_CF=0.0, VM_CF=0.0, VC_CF=0.0; //the 3 parts of the cost function: joint, marginal and cross

information potentials

for (int i=0; i<TrainDim; i++)
[

for (int j=0; j<TrainDim; j++)

[

aux_VJ_CF +=Vij_x(i,j) * Vij_y(i,j);

]

aux_VC_CF += Vj_x(i) * Vj_y(i);
]
VJ_CF =aux_VJ_CF/ (dTrainDim*dTrainDim); //the argument for the joint information potential
aux_VJ_CF =0.0;
VM_CF =V _x *V_y; //the argument for the marginal information potential
VC_CF = aux_VC_CF / (dTrainDim); //the argunment for the cross information potential

aux_VC_CF = 0.0;

LASCA Project — Final Report 167

CostFn = (log(VJ_CF) + log(VM_CF) - 2.0*log(VC_CF)); //the complete information potential
//#it### End of Calculating Cost Function for this Output #i####

total_CostFn += CostFn;

Stop criteria

At this point, the new value of the cost function is calculated (i.e. the real entropy or mutual information
value at the end of each epoch). The model includes a stop criterion, which is activated when the
magnitude increment of the cost function is really low (in this case, when the value of the cost function in
the current epoch is lower than goal parameter. Note that this criterion is only active when the model is

minimizing the objective function.

[/t Stop Criterium HiHH#

//if the cost function do not evolve more than the criteria, than the loop of the epochs is closed
if (abs(CostFn) < goal)

[Epochs1 = numEpochs1;]

[/t End Stop Criterium #it#Ht#

Adaptive learning coefficient

The model includes the adaptive evolution of the learning coefficient. The adaptive criterion is activated
when the cost function evolves in the opposite direction to that expected. The implementation of this
evaluation is made with the comparison of cost function values obtained in the previous and current
epochs (using the ratio between the current cost function and the cost function obtained in the previous
epoch, which is compared with 1 and with the variable max_perf_inc), and taking in consideration the

maximization or minimization objective of the problem.

¢ Maximization case

In the maximization case, the ratio CostFn/Prev_CostFn is expected to be higher than 1, meaning that the

current epoch leaded the cost function to achieve higher values. This way, when the ratio is higher than 1,

LASCA Project — Final Report 168

the learning coefficient is increased by Ir_inc. For this case does not accept a value for learning rate higher

than Max_IrCoeff1.

When the ratio CostFn/Prev_CostFn is lower than 1, the current epoch leaded to a decrease on the cost
function. If this decrease is “not severe”, the algorithm accepts the changes made in weights and bias
during the current epoch and do not change the learning coefficient. The “not severe” is considered when
the ratio CostFn/Prev_CostFn is comprised within the interval [1/max_perf_inc, 1]. If this decrease is “too
severe”, than the algorithm will reject the changes made in weight and bias during the current epoch, and
will cut the learning rate by Ir_dec. “Too severe” is considered when the ratio CostFn/Prev_CostFn is lower

than 1/max_perf_inc.

//##### Learning Coeff Adaptive #####

if(CostFn/Prev_CostFn < (1.0/max_perf_inc))

[
IrCoeffl = IrCoeffl * Ir_dec; //corta o learning rate
Weights1 = prev_Weights1; //ndo aceita pesos
Biasl = prevBiasl;
HiddenTrain = prev_ HiddenTrain;
if (IrCoeffl < 0.00001)

[

IrCoeffl = 0.00001;

if(CostFn/Prev_CostFn > 1.0)

[

IrCoeffl = IrCoeffl * Ir_inc; //aceita pesos e aumenta learning rate
if(IrCoeff1 > Max_IrCoeff1)

[IrCoeffl = Max_IrCoeff1;]

LASCA Project — Final Report 169

if((CostFn/Prev_CostFn >= (1.0/max_perf_inc)) && (CostFn/Prev_CostFn <= 1))

[

//aceita os pesos

//ndo altera o learning rate

]

[/t End Learning Coeff Adaptative #i##H

¢ Minimization case

When the cost function is a minimization, the reasoning made is the opposite. In this case, it is expected
the ratio CostFn/Prev_CostFn to be lower than 1, which means that the current epoch allowed the
achievement of a lower value to the cost function. This way, when the ratio CostFn/Prev_CostFn is lower
than 1, the model accepts the changes in weigths and bias, and increases the learning rate (IrCoeff2) by

Ir_inc. This case does not accept a value for learning rate higher than Max_IrCoeff1.

When the ratio is higher than 1, two cases can occur: the “not severe” case or the “too severe” case, with

similar rules to the ones exposed for the maximization case.

The “not severe” occurs when the ratio CostFn/Prev_CostFn is comprised between 1 and max_perf_inc.
The “too severe” occurs when the ratio CostFn/Prev_CostFn is higher than max_perf_inc. In first case,
accepts weights/bias and do not change the learning rate. In second case, do not accept weights/bias (use
the previous ones) and cuts the learning rate by Ir_dec. This second case do not accept IrCoeffl lower than

0.00001.

[/t Learning Coeff Adaptive #it##H

if(total_CostFn/prev_total_CostFn > max_perf_inc)

[
IrCoeffl = IrCoeffl * Ir_dec; //corta o learning rate
Weightsl = prev_Weights1; //ndo aceita pesos
Biasl = prevBiasl;
HiddenTrain = prev_HiddenTrain;

LASCA Project — Final Report 170

if (IrCoeff1 < 0.00001)
[IrCoeffl = 0.00001;]

]

if(total_CostFn/prev_total_CostFn < 1.0)

[
IrCoeffl = IrCoeffl * Ir_inc; //aceita pesos e aumenta learning rate
if(IrCoeff1l > Max_IrCoeff1)

[IrCoeffl = Max_IrCoeff1;]

if((total_CostFn/prev_total_CostFn >=1.0) && (total_CostFn/prev_total_CostFn <= max_perf_inc))
[
//aceita os pesos
//ndo altera o learning rate
]
[/#####H End Learning Coeff Adaptative #i##H

At this point the epochs loop is complete.

Input information in csv files

After the loop including all epochs is complete, the model is now ready to provide the final results
concerning the first part of the autoencoder. The results at this point can be evaluated with the cost
function of the first part, which is the real value for entropy, or for mutual information. Therefore, the csv
file is incremented with the following information at this part of the model: the initial value of learning
coefficient 1, the final value of the learning coefficient 1 (the final value after running all epochs 1, which
may include several cuts due to the adaptive procedure implemented), the seed for random numbers used

in this experiment, and the final value of the cost function obtained in this experiment.
//Resultados_LrCoeff.open(name);

MaxE(v) = CostFn;

LASCA Project — Final Report 171

Resultados_LrCoeff << "IrCoeffl Inicial:;" << learnCoeff[v] << ";IrCoeffl Final:;" << IrCoeffl << ";seed:;" <<

seed << ";MaxE:;" << MaxE(v) << ";";

//##### END OUTPUTS for each IrCoeff #it##

Maximum learning coefficient to adopt in second part

Calculating the maximum value that can be adopted for the learning coefficient of the second part, the

variable Max_IrCoeff2.

[/ ####H#H## maximum learnCoeff 2 value to be adopted ######H#H##H
mat C2 (DimHidden, DimHidden);

C2 = cov(HiddenTrain, HiddenTrain);

vec eigval2 = eig_sym(C2);

double Max_IrCoeff2 =1.0 / (2.0 * max(eigval2));

[/ #H###HE maximum learnCoeff 2 value to be adopted ###HHiHEH

Declaring variables for the second part

New variables are initialized for the second part. Vector dervPI2 (dimension DimOut) to store the values of
the derivative of the information potential. Also, three matrices are initialized in this part of the model: i)
the matrix to store the expanded particles obtained OutputsTrain (dimension TrainDim x DimOut), ii) the
matrix to store the weight variation in each epoch delta_weights2 (dimension DimHidden x DimOut), and
iii) the matrix with the current weights of the second part of the autoencoder Weights2 (dimension

DimHidden x DimOut).
vector <double> dervPI2;

dervPI2.resize(DimQOut);

mat OutputsTrain(TrainDim, DimOut);

mat delta_weights2(DimHidden,DimQut);

mat Weights2(DimHidden,DimOut);

LASCA Project — Final Report 172

Weights (2nd Half) initialization

The weights in the second part of the autoencoder may be initialized with the final weights obtained in the
first part, using the transposed matrix, or with random numbers. When the variable InitWeightsTranspose
is defined in the beginning of the model (see section D), the weights are initialized with the transposed
matrix of the first part final weights, when InitWeightsTranspose is not defined, the weights are initialized

with random numbers.
//the second part weights may be initialized with the transposed final weights from first part
#ifdef InitWeightsTranspose
Weights2 = trans(Weights1);
// or with random numbers
#else
for (unsigned int hid=0; hid <DimHidden; hid++)
[
for (unsigned int out=0; out<DimOQut; out++)
[Weights2(hid,out) = aleat(rng);]
]

#endif

Bias (2nd half) initialization

The bias values of the second half are always initialized with random numbers. Vector Bias2 (dimension

DimOut) store the bias of the second part.
//Random Initialization of vector Bias2

vec Bias2(DimOut);

for (unsigned int out=0; out<DimOut; out++)

[Bias2(out) = aleat(rng);]

Matrix OutputsTrain First Calculation

At this point, the weights2 and bias2 are initialized. The code proceeds with the calculus of the first matrix

OutputsTrain, storing the initial outputs instances (using the initial weights2 and bias2).

LASCA Project — Final Report 173

//### Calculo inicial das particulas aumentadas ###
//faz o conjunto de particulas aumentado dado o conjunto de pesos actual, todas de uma vez
double somatorio = 0.0;
for (unsigned int tr=0; tr<TrainDim; tr++)
[
for(unsigned int out=0; out<DimOut; out++)
[
for(unsigned int hid=0; hid<DimHidden; hid++)
[
somatorio += ((HiddenTrain(tr,hid))*(Weights2(hid,out)));
]
somatorio += Bias2[out]; //VectorBias adicionado ao somatorio
OutputsTrain(tr,out) = actFcn(somatorio, actFcnFlatness); //funcao activacdo

somatorio = 0.0;

]

//### END Calculo inicial das particulas aumentadas ###

Variables initialization (2nd Half)

The code proceeds with the initialization of some variables that are further applied.
unsigned int Epochs2 = 0;

double MSE_train = 100000.0, Prev_MSE_train=0.0, MAE_train=0.0;

double Best MAE_train=100.0, Best. MAE_test=100.0;

double Best. MSE_test=100.0, Best. MSE_train=100.0;

Epochs loop (2nd Half)

The code proceeds with the loop over the number of epochs to execute within the second half.

LASCA Project — Final Report 174

while (Epochs2 < numEpochs2)

[//(..)]

Traveling on instances

Once inside the loop over the number of epochs 2. The vector prevBias2 and the matrix prev_Weights2
store the values of the corresponding parameters concerning the previous epoch. The loop over the

trainDim implements the classic backpropagation algorithm.
vec prevBias2(DimOut);
prevBias2 = Bias2;
mat prev_Weights2(DimHidden,DimOut);
prev_Weights2 = Weights2;
[[HHEHE B H AP/ dzk SHEHEHEHEHEHEHE
//derivada do potencial de informacdo em ordem avyi
for (unsigned int tr=0; tr<TrainDim; tr++)
[
for(unsigned int out=0; out<DimOut; out++)
[dervPI2[out] = -(TrainSet(tr,out) - OutputsTrain(tr,out));]
//nesta altura esta calculada a derivada de Pl em ordem avyi

//a seguir faz a derivada do yi em anélise em ordem aos pesos e multiplica pela dPY/dyi e por rho, com o

sinal de acordo com maximizar ou minimizar

for (unsigned int hid=0; hid<DimHidden; hid++)

[

for (unsigned int out=0; out<DimOut; out++)

[

//diferenca das derivadas de y em ordem as pesos
delta_weights2(hid,out) = (-1.0)* IrCoeff2 * dervPI2[out] * (HiddenTrain(tr,hid) *
DervActFcn(OutputsTrain(tr,out), actFcnFlatness));

LASCA Project — Final Report 175

Weights2(hid,out) += delta_weights2(hid,out);

//nota: a saida do espago reduzido do neuronio bias é sempre 1
for (unsigned int in=0; inkDimOut; in++)

[Bias2(in) += (-1.0)* IrCoeff2 * (dervPI2[in]) * DervActFcn(OutputsTrain(tr,in), actFcnFlatness);]

//fim da actualizagdo dos pesos para o vector yi

dervPI2.resize(Dimlin);

]

With the new weights2 and Bias2 calculated within each epoch of backpropagation, the corresponding

matrix OutputsTrain is calculated. This is followed by the saturation process.

MAE and MSE error calculation for the train data set

Each epoch performs the assessment of the error considering all particles. The error is measured with two
metrics: the mean absolute error (MAE) and the mean square error (MSE). The MSE is used as the cost
function to be minimized in the second half of the autoencoder, and consequently this measure is used to
further define the stop criterion and the learning coefficient 2 adaptive criterion. Note that these error
measures report the error obtained with the last epoch, since the particles are expanded at the beggining
of each epoch. First the model starts to calculate the matrix ErrorMatrixTrain (dimension TrainDim x
DimOut) which contains the difference between the Target (matrix TrainSet) and the Output (matrix

OutputsTrain).

[/t Train data set MAE between target and output #t#HHEHHH]
//Error matrix calculation

mat ErrorMatrixTrain (TrainDim, DimOut);

for(unsigned int tr=0; tr<TrainDim; tr++)

|
LASCA Project — Final Report 176

for (unsigned int out=0; out<DimOQut; out++)
[ErrorMatrixTrain(tr,out) = TrainSet(tr,out) - OutputsTrain(tr,out);]

]

The MAE estimation is made calculating the sum of the absolute value of each element of ErrorMatrixTrain,
and dividing this sum by the number of elements in the matrix ErrorMatrixTrain. The MAE value is stored in

the variable MAE_train.

//MAE calculation

MAE_train = 0.0;

for(unsigned int tr=0; tr<TrainDim; tr++)

[
for(unsigned int out=0; out<DimOut; out++)
[MAE_train += abs(ErrorMatrixTrain(tr,out));]

]

MAE_train = MAE_train/(dTrainDim*dDimOut);

The Best_MAE_train is intended to store the lowest MAE found over all epochs. This variable is compared

with the MAE found for each epoch, and it is replaced whenever a lower MAE value is found.
//BEST condition
if (MAE_train<Best_ MAE_train)[Best MAE_train=MAE_train;]

The information on seed, Epochs2, MAE of the current epoch and Best MAE found is printed into the file

detailed_output.
// Ficheiros detailed

detailed_output << "Seed; "<< seed <<";Epoca ;" << Epochs2 << "; MAE train ;"<< MAE_train << ";

Best MAE_train ;"<< Best_ MAE_train;

The MSE is estimated with the sum of the square of all elements of the matrix ErrorMatrixTrain. This sum is

then divided by the number of elements of this matrix.
[/ #itHHE S Train data set MSE between target and output ####H##HH B

Prev_MSE_train = MSE_train;

LASCA Project — Final Report 177

MSE_train = 0.0;
for(unsigned int tr=0; tr<TrainDim; tr++)
[
for(unsigned int out=0; out<DimOut; out++)
[MSE_train += pow(ErrorMatrixTrain(tr,out),2.0);]
]
MSE_train = MSE_train/(dTrainDim*dDimOut);

The variable Best_MSE_train is intended to store the lowest MSE observed over all epochs. This variable is

actualized whenever a lowest MSE_train is found.

//BEST condition

if (MSE_train<Best_MSE_train)[Best_ MSE_train=MSE_train;]

The information concerning the MSE_train and the Best_ MSE_Train is printed into the file detailed_output.
// Ficheiros detailed

detailed_output << "; MSE_Train ;" << MSE_train << "; Best_MSE_train ;" << Best_MSE_train;

Stop Criterion (2nd half)

The stop criteria in the 2™ half is similar to the one defined for the 1** half. The only difference is the value

of the cost function used, this time it is used the minimization of the MSE.
[/t Stop Criterium HitH#

//if the MSE_treino is lower than the criterion goal, the epochs loop is closed
if (abs(MSE_train) < goal)

[Epochs2 = numEpochs2;]

[/H#HEH End #itfH

Adaptive learning coefficient (2nd half)

The procedure followed with the adaptive learning coefficient in the 2™ half is similar to the one described

for the 1° half of the autoencoder.

LASCA Project — Final Report 178

MAE and MSE error calculation for the test data set

The MAE and MSE are then calculated for the test data set. The code and the reasoning applied is similar to

the one described for the train data set.

End of the Epochs2 loop

Finally, the number of epochs is incremented by one, till the while loop achieves the maximum number of

epochs defined, or the stop criterion is met.

Epochs2++;
Time

Once the loops on learning coefficients and seed are closed, the model executes the calculation of the time
(in seconds) spent, and includes this information in the last line of the results csv file. Finally, the results file

is closed.
time (&end); //TIME
Resultados_LrCoeff << difftime (end,start) << "seconds" << endl; //TIME

Resultados_LrCoeff.close();

65 Bibliography

Beale, M., Hagan, M., & Demuth, H. (2012). MATLAB Neural Network Toolbox - User's Guide (R2012a).

El-Sharkawi, M. A. (1995). Neural Network Application to High Performance Electric Drives Systems.
Paper presented at the Proceedings of the 1995 IEEE IECON 21st International Conference on
Industrial Electronics, Control, and Instrumentation.

Hagan, M. T., Demuth, H. B, & Beale, M. H. (1996). Neural Network Design. Boston and London: Pws
Pub.

Haykin, S. (1999). Neural Networks - A Comprehensive Foundation (2nd ed.). Ontario, Canada: Pearson
Education.

Jenssen, R, Principe,]., Erdogmus, D., & Eltoft, T. (2006). The Cauchy-Schwarz divergence and Parzen
windowing: Connections to graph theory and Mercer kernels. Journal of the Franklin Institute, 343(6),
614-629.

Miranda, V. (2007). Redes Neuronais — Treino por Retropropagacido (Texto de apoio a disciplina de
Controlo Difuso e Redes Neuronais do 52 ano da LEEC). Porto, Portugal.

Principe, J. C. (2010). Information Theoretic Learning Renyi's Entropy and Kernel Perspectives:
Springer.

Principe, J. C. (n.d.). Information-Theoretic Learning (Tutorial).

Silverman, B. W. (1986). Density Estimation for Statistics and Data Analysis. London, UK: Chapman &
Hall/CRC.

LASCA Project — Final Report 179

Xu, D., & Principe, J. C. (1999). Training MLPs Layer-by-Layer with the Information Potential. Paper
presented at the IJCNN International Joint Conference on Neural Networks, Washington.

LASCA Project — Final Report 180

PTDC/EEA-EEL/104278/2008

66 1 Introduction

Training a neural network aims at optimizing a cost function F. For that optimization, we use the Steepest
Descent Method (SDM) that is an iterative process that moves in direction to the optimum (it could be a

local optimum):

dF
aa)ij

k+

_ .k
w1 = wi* + 1 eq. R6/(1)
The steepest descent method basically will require adjustments in the weights that obey the following

expression:

oF eq. R6/(2)

A0 =50y

The parameter 1 corresponds to the iteration step, or learning rate, and it will be positive for maximization
and negative for minimization. Generally, a momentum term is added to the algorithm. This term aims at
avoiding the method to get trapped in local optima. Considering the momentum term, the algorithm can be
defined as presented in (63). A detailed explanation can be found in (Miranda, 2007).

oF
Awij(t) =7 % + aAa)ij(t_l) eq.R6/(3)

U

67 2 Classic PROP theory overview

The classic backpropagation algorithm is a supervised approach to train neural networks, firstly proposed in

(Rumelhart, Hinton, & Williams, 1986). The train of the neural network pursues the minimization of the

LASCA Project — Final Report 181

Mean Squared Error (MSE) between the output and target instances. The MSE is represented in eq. R6/(4),
where N is the total number of instances and M the total number of output neurons. This expression is in

agreement with the implementation followed at software MATLAB (Beale, Hagan, & Demuth, 2012).

N M N M
1 5 1 ,
MSE:NXMZZ(el]) =NXMZ ' (Tl]_OU) eq. R6/(4)
i=1j=1 i=1j=1
And the derivative of MSE in order to the output 0;; is defined as follows.
0 _ 2
30, MSE = =577 (Tii = 0i) eq. R6/(5)

The minimization of MSE is made using a Steepest Descent Method (SDM) algorithm (Miranda, 2007).
Moreover, the adaptive learning rate (Hagan, Demuth, & Beale, 1996, pp. 12-12) was applied to the classic
PROP algorithm. The next figure details the autoencoder. As this is an autoencoder, output and target

dimensions matches with input dimensions.

Xij Oy li
Ve

— 7
Classic methods (supervised)

Figure R6/ 1 - Schematic of an autoencoder trained with backpropagation.

Where:

® X;j =neuron atinput layer;

® Yy, = neuron at hidden layer;

® 0;; = neuron at output layer;

L tij = xij target neuron;

o j=1,...M;k=1,..,L;i=1,..,P, with M being the total number of input/output neurons, L

the total number of hidden neurons, and P the total number of instances (examples) of training.

LASCA Project — Final Report 182

68 3 Other Theory Overview

68.1 3.1 MinMax Normalization Method

In training neural networks, should be done a pre-processing of data that consists in their normalization.
The advantage of this procedure is that it reduces the effects of outliers in the data. The data have a better
adjustment to the range of the activation function. As we use the tangent hyperbolic for the activation

function, the range to our data is [—1, 1]. To perform this normalization we chose the Min-Max method:

data — ming,4

data,ormatizea = maxyew — minNew) + minyey, eq. R6/(6
q

Mmaxorig — minOrig

Where max ey is the maximum value for the normalized data; min p,,, is the minimum value for the
normalized data; max ¢4 is the maximum value for the original data; min 4 is the minimum value for

the original data. In our case, max ye, = 1 and min p,,, = —1:

2 x data — maxgrig — Mingyrig

datanermatizea = eq. R6/(7)

MmaXorig — minOrig

There are other methods for data normalization but this method has the advantage of preserving exactly all
relationships in the data. Another point in normalization procedure is the choose of max,,;; and ming,.;4.

In our code we implemented the methods:

¢ Global normalization: the chosen of maxy.;; and ming,;4, parameters can be done in all set of
data (if they are similar, as our case);
¢ Normalization by entry: the chosen can be done by input matrix entry, this means that max,,;4

and ming,;4 choice need to be done for each input neuron in the correspondent set of instances.

Auxiliary calculations: Aim of normalizing data process is transform the data in the original range

[Min grig, Max grig] into a new range [Min yey, MAX yew -

LASCA Project — Final Report 183

Figure R6/ 2 - Schematic of data transformation incurred with min max normalization.

We need the straight line equation: y =m-x + b.

max yew — MIN yew

m= ;
max grig — MiN grig

max yew — MIN yew

y x+b

max orig — min orig
(max grig, MAx yey) € straight line, so:

max yew — MIN yew

max yew = "Max grig + b &

max orig — min Orig

Max yew — MiN yew
S b =max yew — - "MAX orig
max orig — MIN grig

_ MAX yew *MAX grig — MAX New -min orig — MAX yew *MAX grig + Min ey - Max orig

max orig — MN orig

_ Max yew * MiN grig — MIN New * MAX orig

Max grig — MIN orig

So,
y = max yew — MIN New 2 Max yew " MIN grig — MIN yey * MAX orig
max orig — MN orig max orig — MIN orig
1
Sy = — [(max New — MUN yey) * X — (MAX yey * MiN orig — MUN yew " TMUN orig
max orig — MIN grig
+ MiN ey - MIN grig — MIN pgy, - MAX On-g)]
1
Sy = [(max New — MM yeyw) * X — (NAX yey — MIN) - MiN orig — MUN New

max orig — min orig
* (min orig — max Orig)]

LASCA Project — Final Report 184

X —min Orig . .
Sy = - (max yew — MiN yew) + MIN yeyw
max orig — MIN grig

This is,

data — ming,4

datanormaiizea = (Maxyew — Minyey) + Minyey

Maxorig — MiNgrig

68.2 3.2 Adaptive Learning Rate

An adaptive learning rate was implemented in all autoencoders. The rules used to define the adaptive
learning evolution are the ones define in (Hagan et al., 1996, pp. 12-12). These rules are detailed here. This
section describes the influence of the parameters learning rate (Ir), learning rate increase (Ir_inc), learning
rate decrease (Ir_dec) and maximum performance increase (max_perf_inc) (we use the same name
adopted in MATLAB neural networks toolbox for these parameters). The changes to induce in the learning
rate are assessed by the value of the ratio between the cost function in the current epoch and the cost

function obtained in the previous epoch:

. t
Ratio = — eq. R6/(8)

The changes induced into the autoencoder parameters, considering different values of this ratio and
depending on the minimization / maximization objective function, may include i) changes in learning rate,
ii) acceptance or rejection of the changes in weights and bias of the current epoch, iii) changes in the
momentum term rate. So far, the model does not include changes on the momentum term rate (note that

the momentum term is set to zero in all the results further presented).

Minimizing case

When minimizing the cost function, the adaptive learning algorithm evolves differently under three distinct

scenarios. The next table summarizes the three scenarios.

Table R6/ 1 - Different cases of adaptive learning algorithm evolution when minimizing the cost function.

Ratio value |Assessment Learning Rate Weights and Bias

The cost function The learning coefficient is|The changes performed in

Jeo, 1 evolves as desired. |, 1o ased by Ir_inc rate (in|the current epoch are

our case always 1.01 —|maintained (weights, bias)

LASCA Project — Final Report 185

The cost function is|laugmenting 1%).
evolving in the desired

direction (minimizing).

The cost function
evolves in the

opposite direction.

“not severe” The changes of current
[1,max_perf_ The learning rate is not
epoch are maintained
inc] changed.
(weights and bias).
The cost function had

evolved in the
opposite direction to
the one that was

desired, but only 4%

The cost function
evolves in the

opposite direction.

The changes performed in

] “too severe” The learning rate is cut by
the current epoch are
max_perf_inc Ir_dec (in our case always
discarded (weights and
,+oo[0.5).
The cost function bias).

evolved drastically in
the opposite direction
to the one expected

(more than 4%)

The first scenario occurs when the Ratio value is lower than 1, meaning that the cost function decreased. In
this case, the algorithm accepts the changes performed in the structure of the autoencoder (weights and
bias upgrades), and the learning coefficient is increased by Ir_inc. The second scenario (“not severe”) occurs

for Ratio values comprised between [1, max_perf _inc]. Besides the cost function evolution being opposite

LASCA Project — Final Report 186

to the objective, the algorithm still accepts the changes made in this epoch and do not change the Ir. The
third scenario (“too severe”) is considered for Ratio values higher than max_perf inc. In this case the
algorithm will discard the changes developed in the current epoch (this means that every change made
under the current epoch is reverted, and the next epoch will have the same starting point). In this case the

algorithm cuts the Ir by Ir_dec.

Maximizing case

The maximizing case (used in entropy of hidden layer and mutual information between inputs and hidden

layer) is discussed in this section. Three possible situations may occur, as summarized in the next table.

Table R6/ 2 - Different cases of adaptive learning algorithm evolution when maximizing the cost function.

CostFn /
Assessment Learning Rate Weights and Bias
PrevCostFn
The cost function
evolves in the
opposite direction.
“too severe” The changes performed in
]-oo, The learning rate is cut by
the current epoch are
1/max_perf_i Ir_dec (in our case always
discarded (weights and
nc [The cost function|0-5). _
bias).
evolved drastically in
the opposite direction
to the one expected
(more than 1/
max_perf_inc).
The cost function
evolves in the
‘ ' ‘ The changes of current
[1/max_perf_i opposite direction. The learning rate is not o
epoch are maintained
nc, 1] changed.
(weights and bias).
“not severe”

LASCA Project — Final Report 187

The cost function had
evolved in the
opposite direction to
the one that was
desired, but only till 1/

max_perf_inc.

The cost function

evolves as desired.

The learning coefficient is
The changes performed in
increased by the Ir_inc rate

] 1,+09[the current epoch are

The cost function is (in our case always 1.01 —

evolving in the desired augmenting 1%). maintained (weights, bias)

direction

(maximizing).

The reasoning for these three situations is similar to the one previous described. The only difference is the

use of the inverse value of max_perf _inc to define the limit between “not severe” and “severe” scenarios.

68.3 3.3 Stop Criteria

The stopping criterion is the number of epochs for all methods. When under a minimization objective, an

extra stop criterion is defined, that will make the epochs loop stop for cost function values close to zero.

68.4 3.4 Neural Network Saturation

The saturation problem is appears when the nonlinear activation functions reach its upper or lower
saturation limits. As El-Sharkawi explains (El-Sharkawi, 1995), any wide change in the input would produce
no or minimal change in the output and the neurons in this case are paralyzed. El-Sharkawi also confirms
that it is common and acceptable to have some neurons in the saturation region, but too many would

render the neural network useless.

LASCA Project — Final Report 188

Saturation
\‘

Input

Figure R6/ 3 - Saturation regions of a Sigmoidal Function (from (El-Sharkawi, 1995)).

If network reaches saturation, the neurons must be randomly perturbed and the learning process

continued. For El-Sharkawi, it is imperative that this saturation check be incorporated in any NN software.

69 4 PROP pseudo-code

Initialize[int numEpochsl; int DimIn; int DimHidden; int TestDim; int TrainDim; double momRate; double

actFcnFlatness; vec learnCoeffl; vec seed;]
Input [mat TrainDataSet]

Normalize [TrainDataSet]

Randomize [TrainDataSet]

Input [mat TestDataSet]

Normalize [TestDataSet]

Loop over learnCoeffl

[

Loop over seed

[
Initialize [mat Weightsl; mat Weights2; vec Biasl; vec Bias2;]
Calculate [mat HiddenTrain; mat OutputsTrain; double max_learnCoeff1]

Loop over Epochsl

[

Loop over TrainDim

[

Loop over DimIn

[
Calculate [dE/dy2;]

Loop over DimHidden
Calculate [momTerm; dy2/dw; mat delta_weights2;]
Update [Weights2;]

]

Calculate [vec delta_Bias2;]
Update [Bias2;]
]

Loop over DimHidden

[

Loop over DimIn
Calculate[dE/dy2; dy2/dnet2; dnet2/dy1l;]

1
Calculate [dyl/dnetl;]

Loop over DimIn
Calculate [dnetl/dw; momTerm; mat delta weightsi;]
Update [Weightsi;]

1
Calculate [vec delta_Biasil;]

Update [Biasl;]
1
1
Update [HiddenTrain; OutputsTrain;]
Calculate [mat ErrorMatrixTrain; MSE_train;]

LASCA Project — Final Report

189

Verify [Stop criteria; Adaptive learnCoeffl conditions]
Calculate [MAE_train;]

Calculate [mat HiddenTest; mat OutputsTest;]

Calculate [mat ErrorMatrixTest; MSE_test; MAE_test;]

1
Print [Results;]

1
1

70 5 PROP code documentation

This section details the code developed to train autoencoders with classic back propagation with learning

adaptive criteria, according to the theory presented before.
Auxiliary Functions

actFcn

This function implements the choice for the activation function, with activation and actFcnFlatness as input

parameters. We can choice between 3 functions: Logistic, Hyperbolic Tangent and Linear.

1
LOngth = activation
1 4+ e actFcnFlatness
. 2
Hyperbolic Tangent = —ciivation 1

1 4 e actFcnFlatness

2
1+4e—2+activation

At MATLAB, Hyperbolic Tangent = —1, that is equivalent to considering

actFcnFlatness = 1/,
Linear = activation
To our runs, Hyperbolic Tangent for MATLAB is the active activation function. The result of this function
is a variable of type double, output.
DervActFcn

This function implements the derivative for the chosen activation function, with output and actFcnFlatness

as input parameters.

(output * (1 — output))
actFcnFlatness

Derivative Logistic =

(1 — output?)
2 x actFcnFlatness

Derivative Tangent =

LASCA Project — Final Report 190

At MATLAB, Derivative Tangent = (1 — outputz), that is equivalent to considering actFcnFlatness =
1 /2_
Derivative Linear = 1

To our runs, Derivative Hyperbolic Tangent for MATLAB is chosen according to the choice made for the

activation function. The result of this function is a variable of type double, tmpDerivative.

PCA

This function implements the intrinsic function princomp of Library Armadillo for C++. The input
parameters are TrainSet_PCA and Dimin. The output of Armadillo function princomp is a matrix (Diminx

Dimin) of coefficients of principal components (Dimin).
The result of this function is a variable of type matrix, Weights_PCA.

//Auxiliar Functions

double actFcn(double activation, double actFcnFlatness)
[
////NEURON_ACT_LOGISTIC: // logistic activation function
//double output =1 /(1 + exp(- activation / actFcnFlatness));
//NEURON_ACT_TANH: //hyperbolic tangent (tanh)
// double output = tanh(activation / actFcnFlatness);
//double output = (2.0/ (1.0 + exp(- activation / actFcnFlatness))) - 1.0; //KEKO
double output=(2.0/ (1.0 + exp(- 2.0* activation))) - 1.0; //matlab
//double u = activation / actFcnFlatness;
//double output = (exp(u) - exp(-u))/(exp(u)+exp(-u));
////NEURON_ACT_LINEAR: // linear (ignores flatness)
//double output = activation;

return output;

LASCA Project — Final Report 191

double DervActFcn(double output, double actFcnFlatness)
[
double tmpDerivative;
////NEURON_ACT _LOGISTIC: // logistic
//tmpDerivative = (output * (1 - output)) / actFcnFlatness;
//NEURON_ACT_TANH: // hyperbolic tangent
//tmpDerivative = (1.0 - pow(output, 2.0))/ (2.0 * actFcnFlatness); //keko

tmpDerivative = (1.0 - pow(output, 2.0)); //matlab

////NEURON_ACT_LINEAR: // linear
//tmpDerivative = 1;

return tmpDerivative;

mat PCA(mat TrainSet_PCA, unsigned int DimlIn)
[
mat Weights_PCA(DimIn,DimlIn);
Weights_PCA = princomp(TrainSet_PCA);

return Weights_PCA;

Auxiliary parameters

The backpropagation code developed included similar specifications to those found within MATLAB. This
goal was pursued by implementing the procedures as described in (Salman, 2008), which are the ones
adopted in MATLAB libraries, alongside with the standard parameters’ values as detailed in (Beale et al.,

2012).

LASCA Project — Final Report 192

The Ir_inc parameter is the Ratio to increase learning rate. When ratio between Cost Function actual value
and Cost Function previous value is higher than one (i.e., when Cost Function increase) then learning rate is
raised by a percentage of actual value. This percentage corresponds to the Ir_inc value, in that case is

assumed 5% of this actual value.

The Ir_dec parameter is the Ratio to decrease learning rate. When ratio between Cost Function actual value
and Cost Function previous value is less than a predetermined value (i.e., when Cost Function decrease)
then learning rate is cut by a percentage of actual value. This percentage corresponds to the Ir_dec value,

in that case is assumed half of this actual value.

The predetermined value above is related with max_perf_inc parameter that is the Maximum performance

increase. This is an acceptable interval to the increase of Cost Function, in our case 4%.
//###defining a vector containning the learning coefficients to test the redutor###
vector <double> learnCoeff;

double Ir_dec =0.5;

double Ir_inc = 1.05;

double max_perf_inc = 1.04; //performance - racio (=CostFunction/Prev_CostFunction) a partir do qual nao

se actualizam pesos

double goal = 0.00000001; //como no matlab

Vector learnCoeff

The code is intended to run several simulations, each one with a different learning coefficient. This is
achieved with the definition of a vector learnCoeff, which includes all the desired values to test the learning
coefficient. The construction of this vector can be done with a loop (when the values differ on the same

slope) or with the individual inputs (when the values to test are distinct).
learnCoeff.push_back(0.005);

learnCoeff.push_back(0.05);

learnCoeff.push_back(0.5);

learnCoeff.push_back(5);

/*for (double f=0.001; f<0.011; f+=0.001)

LASCA Project — Final Report 193

learnCoeff2.push_back(f);

1*/

unsigned int DImLC;
DimLC = learnCoeff.size();
//#t#end of defining a vector containning the learning coefficients to test the redutor##

The value “DimLC” measures the dimension of the vector containing the learning coefficients to test this

method. This variable is further applied to define one of the main loops.

Main Results File

The code creates a csv file, with a specific name for Prop method — Results_Prop.csv, to further include the
main information of tested autoencoder. This file will include information on the i) starting value of the
learning coefficient used, ii) the final value of this coefficient (it evolve following an adaptive algorithm,
which decreases it value whenever the respective cost function evolves to the opposite direction to the
optimization objective), iii) the boost random seed used, iv) the best mean absolute error — Best_MAE and

v) the best mean squared error — Best MSE between outputs and inputs of the autoencoder.
ofstream Resultados_LrCoeff;//ficheiros de saida de dados
string name ("Results_Prop.csv");

Resultados_LrCoeff.open(name);

Fixed Parameters

The main parameters are defined together. The variable numEpochsl define the number of epochs that
the code will execute the autoencoder. Dimin is the number of neurons at the entrance of the
autoencoder. DimHidden is the number of neurons in the middle of the autoencoder. DimOut is the exit
number of neurons of the autoencoder and for this reason is assumed to be equal to the entrance number
of neurons. The variables dDimin, dDimHidden and dDimOut are doubles with the same meaning (the joint
use of a variable for integer and double definition is not a good idea for some functions - therefore we
never mix integers with doubles). The variable TestDim refers to the number of instances to be included in
the validation data set. dTestDim is the double of TestDim. TrainDim is the number of instances to train

the autoencoder. dTrainDim is the double of TrainDim.

LASCA Project — Final Report 194

The code includes the momentum rate (Miranda, 2007). The rate (a) is specified in the variable momRate.
The variable actFcnFlatness refers to the activation function flatness (Haykin, 1999). The variables SatLimit
and ThresholdSat are used in the Saturation procedure. Next, Normalization variable allows chooses if the
input data normalization is processed or not. The variable Weightslnitialization_PCA should be defined
when the weights initialization intended to be with Principal Component Analysis (PCA). When not defined

the weights are initialized randomly with uniform distribution.

unsigned int numEpochs1 = 2000;

unsigned int DimlIn = 24; // instances DimInension = first layer DimInension

double dDimln = 24.0;

unsigned int DimHidden=16; //hidden layer dimension

double dDimHidden=16.0;

unsigned int DimOut = DimIn; //output layer dimension

double dDimOut = dDimin;

unsigned int TestDim = 500;
double dTestDim = 500.0;
unsigned int TrainDim = 1000; // Numbers of instances/examples in train set

double dTrainDim = 1000.0;

double momRate = 0.0; //momentum coef

double actFenFlatness = 0.5; // For Activation Function

LASCA Project — Final Report 195

Random numbers generators

The code uses the boost libraries (see www.boost.org) to define two functions that generate random
numbers. The function aux_aleat(rng) generates uniform real numbers between the interval [0,1], the

function aleat(rng) generates uniform real numbers between the interval [-1,1].
//#### random functions definition ####

boost::random::mt19937 rng;

boost::random::uniform_real_distribution<> aux_aleat(0,1);
boost::random::uniform_real_distribution<> aleat(-1,1);

//#### END of random functions definition #####

Randomizing the instances in train data set

The train data is a set of instances, or particles (each instance has the same size as the first layer of the
autoencoder). The order in which the particles are covered is defined randomly (but the same order is used
in every comparison of different methods, as the random seeds considered are the same: random seed =
3578). To create this random instance selection, the vector indices is created, which contains different
integer numbers between 0 and TrainDim, and is further used to address the instances position on the train

set.

// ###t#H Randomize TrainSet Hitt
rng.seed(3578);

vec RandPosition(TrainDim);

for (unsigned int i=0; i<TrainDim;i++)
[RandPosition(i) = aux_aleat(rng);]

uvec indices = sort_index(RandPosition);
// #it### END Randomize TrainSet ##H###

This process only interests for incremental learning strategy that updates weights after each instance is
presented. The batch-mode learning strategy (first average the learning rule over all intances before
changing weights) does not depend on way which intances are presented. Our code implements the batch-

mode learning strategy.

LASCA Project — Final Report 196

Reading data from a csv file

The code reads two csv files: the train data set (NovoTipoAC 1.csv) and the validation data set
(NovoTipoAC 2.csv). The code used to read both files is similar. This way, a provisional matrix is created
(ordered_TrainSet) which contains all train instances organized in the same order as the input file. Next
step is the data normalization procedure using the data contained in ordered_TrainSet recording the result
in the normalized matrix norm_ordered_TrainSet (a description of this block can be seen in next section). A
new matrix is created, the TrainSet (the one going to be applied in the further calculations). This matrix
reads the information of the norm_ordered_TrainSet matrix using the indices vector to reorganize the

instances.

Analogously, the matrix TestSet is created and corresponds to the validation set, which contains a set of
instances to assess the performance of the trained autoencoder. There is no need to randomize the
instances of the test data set, since they will not influence the train, and the error measured is not

changeable with their order (this matrix is used only after the training is complete).
//######H Reading Training Data from csv file ##H##H#
ifstream indata;
double f;
string s="";
mat TrainSet(TrainDim,Dimln); // train set matrix
mat ordered_TrainSet(TrainDim,DimlIn); // train set matrix
indata.open("NovoTipoAC_1.csv");
if(lindata) [cerr << "Error: file could not be opened" << endl; exit(1);]
vector < double > auxiliar;
while(getline(indata, s, ;')
[
stringstream fs(s);

fs >> f;

auxiliar.push_back(f);

LASCA Project — Final Report 197

for(unsigned int k=0; k<TrainDim; k++)
[
for (unsigned int j=0; j<Dimin; j++)
[ordered_TrainSet(k,j) = auxiliar[(k*DimIn+j)];]
]
indata.close();

(DATA NORMALIZATION BLOCK — See next Section)

for(unsigned int k=0; k<TrainDim; k++)
[

for (unsigned int j=0; j<DimIn; j++)

[TrainSet(k,j) = norm_ordered_TrainSet(indices(k),j);]
]
ordered_TrainSet.clear();
norm_ordered_TrainSet.clear();

//##### END Reading Training Data from csv file ##t###

Data Normalization

The code allows to choose the data normalization procedure to adopt. Here it is important to know the
meaning of data. Since the new range is [—1, 1] (according to the activation function), the first step
concerns the definition of the original range by entrance. Accordingly, min_train is the vector that contains
the minimum of original data (ordered_TrainSet) by column and max_train is the vector that contains the

maximum by column.

ordered_TrainSet = train data set from csv file (dim = TrainDim x Dimin)
min_train = minimum value by columns of data matrix ordered_TrainSet (dim = 1 x Dimin)

max_train = maximum value by columns of data matrix ordered_TrainSet (dim = 1 x DimIn)

LASCA Project — Final Report 198

The normalization by column(j) is done using the corresponding minimum and maximum value,

min_train(j) and max_train(j), according to eq. R6/(6) and (7).
// ##### Data normalization #Hit###

#ifdef Normalization //performs the normalization by entrance
rowvec max_train = max(ordered_TrainSet,0);

rowvec min_train = min(ordered_TrainSet,0);

mat norm_ordered_TrainSet(TrainDim,DimIn);
for(unsigned int tr=0; tr<TrainDim; tr++)
[

for (unsigned int in=0; in<DimIn; in++)

[

norm_ordered_TrainSet(tr,in) = (2*ordered_TrainSet(tr,in) - max_train(in) - min_train(in)) /

(max_train(in) - min_train(in));
]
]

#tendif
//#i#t### End Data normalization #it###

Similar code and description for test data set (aux_TestSet) normalization with correspondent minimum

min_test and maximum max_test.

Learning Coefficient and seed loops

In Back Propagation method there are two main loops: for each value of i) learning coefficient and for each
ii) seed. Since the learning coefficient was specified with a vector, the loop concerning learning coefficient
relate to the position of learnCoeff vector to use. Seed loop was included to generalize results in what

concern random initialization.

for (unsigned int v=0; v<DimLC; v++)

LASCA Project — Final Report 199

[

Open Output File for each LrCoeff
for(unsigned int seed=800; seed<850; seed+=5)
[
// #### Main Parameters Definition #####
double IrCoeffl = learnCoeff[v];
// #### End of Main Parameters Definition #it###
Next sub-sections: i) Weights initialization, etc.
] //end of seed loop
1 //end of learning coefficient loop
The next sub-sections describe what is included within these two main loops.

The variable DetailedOutputFile when defined creates two csv files, containing the detailed information on
the MAE and MSE errors observed in each epoch, one file relates to the training data set, and the second
file concerns the test data set (note that the general results file includes the final MAE and MSE observed in

each autoencoder).

Weights initialization

The weights of 1° half of the autoencoder can be initialized either with PCA values or with random
numbers. These weights are initialized within the matrix Weightsl of dimension of Dimin x DimHidden.
Weights2 is the matrix for the 2™ half of autoencoder and is inicialized using random numbers (dimension
DimHidden x DimOut) or using the transpose of Weightsl. Matrices prev_Weightsl and prev_Weights2
(dimension of Dimin x DimHidden and DimHidden x DimOut, respectively) of weights are defined to store in

each epoch the weights of the previous epoch. These matrices are inialized to be a zero matrices.

PCA

PCA initialization is stored before loops related with learning coefficient and seed. Matrix Coeff_PCA store
the coefficients of the principal components of train set, TrainSet, using PCA function defined before, that
performs the Principal Components Analysis. In that method, Weightsl stores, in its initialization, the
coefficients of first DimHidden principal components. This is possible as DimHidden < DimIn. Weights2 is

defined as the transpose of Weights1.

LASCA Project — Final Report 200

// PCA

#ifdef Weightslnitialization_PCA

mat Coeff PCA(DimlIn,DimIn);

mat Weights1(Dimln, DimHidden);

mat Weights2(DimHidden, DimIn);

Coeff_PCA = PCA(TrainSet, Dimin);

Weights1 = Coeff PCA.submat(span(), span(0, DimHidden-1));
Weights2 = trans(Weights1);

#endif

// END PCA

Random

Weightsl and Weights2 matrices use the aleat(rng) function. These random numbers are repeatable for
every experiment, as the seed used is defined in the second main loop (and this information is stored in the

general results file as well).
[/t Weights Initialization #iH#t
mat Weights1(DimIn,DimHidden), Weights2(DimHidden,DimOut);
rng.seed(seed);
for (unsigned int in=0; in<DimIn; in++)
[

for (unsigned int hid=0; hid<DimHidden; hid++)

[

Weights1(in,hid) = aleat(rng);

Weights2(hid,in) = aleat(rng);

]

[/#####H End of Weights Initialization ######

LASCA Project — Final Report 201

Bias initialization
In our code, bias are always initialized with random numbers, using the aleat(rng) function. Vectors Bias1
(dimension DimHidden) and Bias2 (dimension DimOut) stores the bias values for each epoch for the first

and second part of autoencoder, respectively. Vectors prevBiasl (dimension DimHidden) and prevBias2

(dimension DimOut) stores the bias values of the previous epoch (initialized with zeros).
//Hi#H## Bias Initialization #it#Ht#

vec Bias1(DimHidden), Bias2(DimOQOut);

vec prevBiasl (DimHidden), prevBias2(DimOut);

Biasl.zeros(); prevBiasl.zeros(), Bias2.zeros(), prevBias2.zeros();

for (unsigned int hid=0; hid<DimHidden; hid++)

[Bias1(hid) = aleat(rng);]

for (unsigned int out=0; out<DimOut; out++)

[Bias2(out) = aleat(rng);]

//#i#### End of Bias Initialization #####

Calculating Hidden and Output matrices

Once the matrices Weights and the vectors Bias are initialized the model estimates the respective outputs
(for the first and second part of the NN). This way, all train instances contained in TrainSet are transformed
and stored in the matrix HiddenTrain (dimension TrainDim x DimHidden). Then, these instances in hidden
layer are transformed and then stored in matrix OutputsTrain (TrainDim x DimIn). For each exit neuron, an

induced local field is calculated, according to eq. R6/(9).

DimiIn
Vi = 2 Wy inXin + D, k=1,.., DimHidden
in=1
Or eq. R6/(9)

DimIn
net, = Z Wi inXin + b, k=1,.., DimHidden

in=1

In expression (9), the induced local field v, for an exit neuron k is defined as the sum of all outputs from the

previous layer (x;,) multiplied with the respective weights linked to neuron k (wy, ;,), and the bias weight

LASCA Project — Final Report 202

associated with the neuron k (by). For further theoretical information see (Haykin, 1999) on pages 34-36.
This induced local field is then applied to the activation function previously defined, using the function
actFcn with inputs v, and actFcnFlatness. To compute the OutputsTrain matrix the formulas are similar,

only changing the input variables:

DimHidden
Vi = Z Wk hidXhid + bk , k = 1, ,DlmOut
hid=1

Or eq. R6/(10)

DimHidden
netk = Z Wk hidXnid + bk) k= 1, ,DlmOut
hid=1

Where wy, ;4 are the weights for the second part, x,;are the elements of HiddenSet and by, is the Bias2.
[/t Calculating HIDDEN and OUTPUT Matrices #HiHtt
// HiddenTrain Matrix == FeedForward Step
mat HiddenTrain(TrainDim,DimHidden); // HiddenTrain Matrix (dimensao padrées X tamanho hidden)
mat prev_HiddenTrain (TrainDim,DimHidden);
double aux1 =0.0;
for (unsigned int tr=0; tr<TrainDim; tr++)
[
for(unsigned int hid=0; hid<DimHidden; hid++)
[
for(unsigned int in=0; in<DimIn;in++)
[
auxl += ((TrainSet(tr,in))*Weights1(in,hid));
]
HiddenTrain(tr,hid) = actFcn(aux1 + Bias1(hid), actFcnFlatness);

auxl =0.0;

LASCA Project — Final Report 203

prev_HiddenTrain = HiddenTrain;

// OutputsTrain Matrix == FeedForward Step
mat OutputsTrain(TrainDim,DimIn); // OutputsTrain Matrix (dimensao padrdes X tamanho hidden)
mat prev_OutputsTrain(TrainDim, DimlIn);
double aux2 = 0.0;
for (unsigned int tr=0; tr<TrainDim; tr++)
[
for(unsigned int in=0; in<DimIn; in++)
[
for(unsigned int hid=0; hid<DimHidden; hid++)
[
aux2 += ((HiddenTrain(tr,hid))*Weights2(hid,in));
]
OutputsTrain(tr,in) = actFcn(aux2 + Bias2[in], actFcnFlatness);

aux2 =0.0;

]

prev_OutputsTrain=0OutputsTrain;

[/HHHHHEND of Calculating HIDDEN and OUTPUT Matrices #iHt#

Maximum Learning Coefficient Calculation

The learning coefficient should respect the threshold defined in eq. R6/(11), where 7, is the learning
coefficient for the first part of the NN, and A, 4x is the maximum eigenvalue obtained from the variance

and covariance matrix of the train data (Hagan et al., 1996).

LASCA Project — Final Report 204

1
< -
m= 2 X Aaiax eq. R6/(11)

This threshold is calculated in the model and stored in the variable Max_IrCoeffl, see (Hagan et al., 1996,
pp. 9-6).

mat C(DimIn,DimIn);

C = cov(TrainSet,TrainSet);

vec eigval = eig_sym(C);

double lambda = max(eigval);

double Max_IrCoeffl1 =1.0/(2.0*¥lambda);

Cost functions variables

Before the Epochsl loop, the code presents the inicialization of some variables used next: matrices
delta_weightsl and delta_weights2 store the changes in weights in the actual epoch; MAE_train and
MSE_train store the minimum absolute error and minimum square error for the train set, respectively
(both initialized with zeros); the Prev_CostFn variable (initialized with zero) stores the cost function value
of the previous epoch, and the CostFn variable (initialized with a big number) stores the cost function
calculated in each epoch; Best_MAE_train, Best_MAE_test, Best_MSE_train and Best_MSE_test (set equal
to 100 to be higher than MAE train and MSE_train at first iteration). These variables are needed outside
the Epochs1 loop, as they are further used to assess the stop criteria and to define the adaptive evolution

of the learning coefficient.

mat delta_weights2(DimHidden,Dimin);
mat delta_weights1(DimIn,DimHidden);
double MAE_train = 0.0;

double MSE_train = 0.0;

double Prev_CostFn = 0.0, CostFn = 100000.0;//grande para criterio adapt do IrCoeff nao cortar na la

iteragcao
double Best_ MAE_train=100.0, Best_ MAE_test=100.0;

double Best. MSE_test=100.0, Best. MSE_train=100.0;

LASCA Project — Final Report 205

Epochs loop

The epochs loop is declared as follows. The next sub-sections detail the processes that are included within

this loop.
for (unsigned int Epochs1=0; Epochsl1<numEpochs1; Epochsl++)

[

Next sub-sections(...)

]

Traveling over the instances

Here, the code implements the formulas corresponding to the Back Propagation method, according to the
theory present at (Miranda, 2007). So, in this block, derivatives, gradient method, moment term, weights
and bias update are computed, according to (Miranda, 2007). First for the second part of the autoencoder
and then for the first part of autoencoder, as the name back Propagation suggests. “Back Forward Step”
starts with loop tr presenting each instance to the network. For each instance (tr) and for each input
neuron (in), the code computes the associated sensitivity factor (notation used at (Haykin, 1999, p. 185), in
code defined as error. Then, for each neuron at hidden layer (hid), and consequently for each weights
between input and hidden layer (hid, in), we have the declaration of moment term (momterm) and the
update of the changes in weights (delta_weights2) and actual weights (Weights2). Vector bias is updated
too (Bias2).

Similarly, sensitivity factor (error); derivatives (D2 — derivative of activation function evaluated at output
neurons (y;), Dervinner — partial derivative dE/dy, * dy,/dnet, * dnet,/dy,, D4 - derivative of
activation function evaluated at hidden neurons); moment term (momterm); changes in weights
(delta_weightsl1), weights (Weightsl) and bias (Biasl) are updated for first half part of autoencoder,
according to equations presented at (Miranda, 2007). The variables prev_Weightsl, prev_Biasl,
prev_Weights2 and prev_Bias2 store the corresponding values of the previous iteration and they are used

to compute the momentum terms. “Back Forward Step” ends.

for (unsigned int tr=0; tr<TrainDim; tr++) //Cross samples: sample t

[
// dV/Dw = dV/dy * dy/dw

for(unsigned int in=0; in<DimIn; in++) //for each output neuron: derivative

LASCA Project — Final Report 206

//dVv/dy

double error = - (2.0/(dTrainDim*dDimIn)) * (TrainSet(tr,in) - OutputsTrain(tr,in));

//dy/dw = derv_ActFn_t * x_t
for (unsigned int hid=0; hid<DimHidden; hid++)
[
double momterm = momRate*(Weights2(hid,in)- prev_Weights2(hid,in));//momentum term

delta_weights2(hid,in) = (-1.0) * IrCoeffl * (error * DervActFcn(OutputsTrain(tr,in), actFcnFlatness)

* HiddenTrain(tr,hid)) + momterm,;

prev_Weights2(hid,in) = Weights2(hid,in);//momentum term
Weights2(hid,in) += delta_weights2(hid,in);

]

prevBias2(in) = Bias2(in);

Bias2(in) += ((-1.0) * IrCoeffl * error * DervActFcn(OutputsTrain(tr,in), actFcnFlatness)) + momRate *

(Bias2(in) - prevBias2(in));
]
// dE/Dw = dE/dy2 * dy2/dnet2 * dnet2/dy1 * dyl/dnetl *dnetl/dw
double aux4 = 0.0;
vector<double> Dervinner;

Dervinner.clear();

for(unsigned int hid=0; hid<DimHidden; hid++) //for each output neuron: derivative

[

for(unsigned int in=0; in<DimIn; in++)

LASCA Project — Final Report 207

//dE/dy2
double error = - (2.0/(dTrainDim*dDimlIn)) * (TrainSet(tr,in) - OutputsTrain(tr,in));
//dy2/dnet2
double D2 = DervActFcn(OutputsTrain(tr,in), actFcnFlatness);
//dnet2/dy1
double D3 = Weights2(hid,in); aux4 += error * D2 * D3;
]
Dervinner.push_back(aux4); aux4 = 0.0;
//dy1/dnetl
double D4 = DervActFcn(HiddenTrain(tr,hid), actFcnFlatness);
for(unsigned int in=0; in<DimIn; in++)
[
//dnetl/dw
double D5 = TrainSet(tr,in);
double momterm = momRate*(Weights1(in,hid)- prev_Weightsi(in,hid));//momentum term
delta_weights1(in,hid) = (-1.0) * IrCoeffl * (Dervinner[hid] * D4 * D5) + momterm ;
prev_Weights1(in,hid) = Weights1(in,hid);
Weights1(in,hid) += delta_weights1(in,hid);
]
prevBiasl(hid) = Bias1(hid);

Bias1(hid) += (-1.0) * IrCoeffl * (Dervinner[hid]*D4) + momRate * (Bias1(hid) - prevBias1(hid));

LASCA Project — Final Report 208

Hidden and Output matrices

When all instances (TrainDim instances) are “traveled”, and the respective cumulated change on weights
are complete (updated Weightsl and Weights2), new output matrices are calculated, using the last

changes performed on the weights (Weights1) (similarly to the first output matrices calculated).
// #### Update HIDDEN and OUTPUT matrices ##t##
// ##### HiddenTrain Matrix H##HH##
aux1 =0.0;
for (unsigned int tr=0; tr<TrainDim; tr++)
[
for(unsigned int hid=0; hid<DimHidden; hid++)
[
for(unsigned int in=0; in<DimIn; in++)
[aux1 += ((TrainSet(tr,in))*Weights1(in,hid));]
prev_HiddenTrain(tr,hid)=HiddenTrain(tr,hid);

HiddenTrain(tr,hid) = actFcn(aux1 + Bias1(hid), actFcnFlatness); aux1 = 0.0;

]
Saturation Process (in next section)
[/ #it### OutputsTrain Matrix ##H##
aux2 =0.0;
for (unsigned int tr=0; tr<TrainDim; tr++)
[
for(unsigned int in=0; in<DimIn; in++)
[
for(unsigned int hid=0; hid<DimHidden;hid++)

[aux2 += ((HiddenTrain(tr,hid))*Weights2(hid,in));]

LASCA Project — Final Report 209

prev_OutputsTrain(tr,in)=OutputsTrain(tr,in);
OutputsTrain(tr,in) = actFcn(aux2 + Bias2[in], actFcnFlatness);

aux2 =0.0;

Saturation Process

One process to avoid the network saturation is randomly pertube the neurons. This was made by

introducing a random perturbation in the weights. Next code implements this perturbation.

Definition of matrix aux_saturationl that identifies saturated elements of matrix HiddenTrain based on
saturation limit (SatLim). If an element in HiddenTrain matrix is higher, in modulus, that the saturation limit
then aux_saturationl stores in the corresponding place 1. For the non saturated elements stores 0.
Definition of variable aux_SatLevell that sums all the elements of matrix aux_saturationl, giving the total
of its saturated elements. SatLevell is the percentage of saturated elements. If the network is saturated,
this is, if SatLevell is higher than a threshold value (ThresholdSat) then weights will be pertubated

according to:
Whew = (random « W) + W eq. R6/(12)

The random number is defined as 0.1 * aleat(rng), where aleat(rng) generates uniform real numbers
between the interval [—1,1], so random is a uniform number between [—0.1,0.1]. This means that

weights suffer a perturbation of 10% into both directions.
[/ #tHa# SATURATION process Hittt

mat aux_saturation1(TrainDim,DimHidden); //auxiliary matrix to calculate the proportion of weights within

saturation state (the weights the absoulte value higher than 0.9)

aux_saturationl.zeros();

for (unsigned int tr=0; tr<TrainDim; tr++)
[
for(unsigned int hid=0; hid<DimHidden;hid++)

[

LASCA Project — Final Report 210

if (abs(HiddenTrain(tr,hid))>=SatLimit)[aux_saturation1(tr,hid) =1;]

else [aux_saturation(tr,hid) =0;]

]

double aux_SatlLevell=accu(aux_saturationl); //retorna a soma acumulada de todos os elementos que

estdo contidos dentro da matrix auxiliar

double SatLevell=aux_SatLevell/(dTrainDim*dDimHidden); //retorna a percentagem de weights 1 que

estdo saturados

if(SatLevel1>ThresholdSat)
[
for(unsigned int hid=0; hid<DimHidden;hid++)
[
for (unsigned int in=0; in<DimIn; in++)
[Weights1(in,hid) = 0.1*aleat(rng)*Weights1(in,hid)+Weights1(in,hid);]
Bias1(hid) = 0.1*aleat(rng)*Bias1(hid)+Bias1(hid);
]
aux1 =0.0;
for (unsigned int tr=0; tr<TrainDim; tr++)
[
for(unsigned int hid=0; hid<DimHidden;hid++)
[
for(unsigned int in=0; in<DimIn;in++)
[aux1 += ((TrainSet(tr,in))*Weights1(in,hid));]
HiddenTrain(tr,hid) = actFcn(aux1 + Bias1(hid), actFcnFlatness);

aux1=0.0;

LASCA Project — Final Report 211

]

[/###iH# END SATURATION process ##H

Cost function

The goal of this code is training a neural network minimizing the cost function, MSE.

N
1
MSE = sz - 0;)? eq. R6/(13)
i=1

Evaluating MSE at all neurons of all instances, the cost function becames:

TrainDim DimIn

1
1 — . — . 2
CostFunction = TrainDim - DimIn § E (Ttr,m Otr,m) eq. R6/(14)

tr=1 in=1

In code, matrix ErrorMatrixTrain corresponds to (T¢yin — Ot in), Where T is the target (in that case, is the
TrainSet matrix) and O is the output (in that case, is the OutputsTrain matrix). Defined Prev_CostFn is the
value of cost function in previous epoch; CostFn (initialezd with zero) is the value of cost function in actual

epoch.
mat ErrorMatrixTrain (TrainDim, DimIn);
for(unsigned int tr=0; tr<TrainDim; tr++)
[

for (unsigned int in=0; in<DimIn; in++)

[

ErrorMatrixTrain(tr,in) = TrainSet(tr,in) - OutputsTrain(tr,in);

]

Prev_CostFn = CostFn; CostFn = 0.0;

for(unsigned int tr=0; tr<TrainDim; tr++)

LASCA Project — Final Report 212

for(unsigned int in=0; in<DimIn; in++)

[CostFn += pow(ErrorMatrixTrain(tr,in),2.0);]

CostFn = CostFn/(dTrainDim*dDimIn);

Stop criteria

At this point, the new value of the cost function is calculated (i.e. the MSE of TrainSet at the end of each
epoch). The model includes a stop criterion, which is activated when the magnitude increment of the cost
function is really low (in this case, when the value of the cost function in the current epoch is lower than

goal parameter. Note that this criterion is only active when the model is minimizing the objective function.
[/t Stop Criterium HitHe
//if the cost function do not evolve more than the criteria, than the loop of the epochs is closed

if (abs(CostFn) < goal)[Epochs1 = numEpochs1;]

Adaptive learning coefficient

The model includes the adaptive evolution of the learning coefficient. The adaptive criterion is activated
when the cost function evolves in the opposite direction to that expected. The implementation of this
evaluation is made with the comparison of cost function values obtained in the previous and current
epochs (using the ratio between the current cost function and the cost function obtained in the previous
epoch, which is compared with 1 and with the variable max_perf_inc), and taking in consideration the

maximization or minimization objective of the problem.

In Back Propagation algorithm, the goal is minimize MSE. In this case, it is expected the ratio
CostFn/Prev_CostFn to be lower than 1, which means that the current epoch allowed the achievement of a
lower value to the cost function. This way, when the ratio CostFn/Prev_CostFn is lower than 1, the model
accepts the changes in weights and bias, and increases the learning rate (IrCoeff1) by Ir_inc. For this case
does not accept a value for learning rate higher than Max_IrCoeffl. When the ratio is higher than 1, two
cases can occur: the “not severe” case or the “too severe” case, with similar rules to the ones exposed for

the maximization case.

The “not severe” occurs when the ratio CostFn/Prev_CostFn is comprised between 1 and max_perf_inc.

The “too severe” occurs when the ratio CostFn/Prev_CostFn is higher than max_perf_inc. In first case,

LASCA Project — Final Report 213

accepts weights/bias and do not change the learning rate. In second case, do not accept weights/bias (use
the previous ones) and cuts the learning rate by Ir_dec. This second case do not accept IrCoeffl lower than

0.00001.

[/#t#H Learning Coeff Adaptive #it#HiHt

if(CostFn/Prev_CostFn > max_perf_inc)

[
IrCoeffl = IrCoeffl * Ir_dec; //corta o learning rate
Weightsl = prev_Weights1; //ndo aceita pesos
Weights2 = prev_Weights2;
Biasl= prevBiasl;
Bias2= prevBias2;
OutputsTrain=prev_OutputsTrain;
HiddenTrain=prev_HiddenTrain;
if (IrCoeffl < 0.00001)[IrCoeffl = 0.00001;]

]

if(CostFn/Prev_CostFn < 1.0)

[
IrCoeffl = IrCoeffl * Ir_inc; //aceita pesos e aumenta learning rate
if(IrCoeff1l > Max_IrCoeff1)[IrCoeffl = Max_IrCoeff1;]

]

if((CostFn/Prev_CostFn >= 1.0) && (CostFn/Prev_CostFn <= max_perf_inc))

[

//aceita os pesos

//ndo altera o learning rate

]

//###H## End Learning Coeff Adaptative HiH##H#

LASCA Project — Final Report 214

Train MAE and MSE Calculation

In this section, an evaluation of MAE (Mean Absolute Error) and MSE (Mean Square Error) of TrainSet is
computed. First, compute the MAE (MAE_train) and the Best_MAE_train that is the best value (minimum)
that MAE reaches until that epoch. Do similar to MSE for TrainSet.

MAE_train = 0.0;
for(unsigned int tr=0; tr<TrainDim; tr++)
[
for(unsigned int in=0; in<DimIn; in++)
[MAE_train += abs(ErrorMatrixTrain(tr,in));]
]
MAE_train = MAE_train/(dTrainDim*dDimin);
if (MAE_train<Best_ MAE_train)[Best_ MAE_train=MAE_train;]
MSE_train=CostFn;

if (MSE_train<Best_MSE_train)[Best_MSE_train=MSE_train;]

Hidden and Output TEST Matrices

Similar to the ones for TrainSet, HiddenTest and OutputsTest matrices are calculated based on last updated

weights and bias.
//compression
mat HiddenTest(TestDim, DimHidden);

aux1 =0.0;

for (unsigned int te=0; te<TestDim; te++)
[
for(unsigned int hid=0; hid<DimHidden; hid++)
[
for(unsigned int in=0; in<DimIn; in++)
[aux1 += ((TestSet(te,in))*Weights1(in,hid));]

LASCA Project — Final Report 215

HiddenTest(te,hid) = actFcn(aux1 + Bias1(hid), actFcnFlatness); aux1 = 0.0;

]
//expansion
mat OutputsTest(TestDim, Dimin);

aux2 =0.0;

for (unsigned int te=0; te<TestDim; te++)
[
for(unsigned int in=0; in<DimIn; in++)
[
for(unsigned int hid=0; hid<DimHidden; hid++)
[aux2 += ((HiddenTest(te,hid))*Weights2(hid,in));]

OutputsTest(te,in) = actFcn(aux2 + Bias2(in), actFcnFlatness); aux2 = 0.0;

Test MAE and MSE Calculation

Similar to the ones for TrainSet, ErrorMatrixTest, MAE_test, Best_ MAE_test, MSE_test and Best_MSE_test

are calculated using the TestSet matrix.
mat ErrorMatrixTest (TestDim, Dimin);
for(unsigned int te=0; te<TestDim; te++)
[
for (unsigned int in=0; in<DimIn; in++)
[ErrorMatrixTest(te,in) = TestSet(te,in) - OutputsTest(te,in);]
]

double MAE_test = 0.0;

LASCA Project — Final Report 216

for(unsigned int te=0; te<TestDim; te++)

[
for(unsigned int in=0; in<DimIn; in++)
[MAE_test += abs(ErrorMatrixTest(te,in));]

]

MAE_test = MAE_test/(dTestDim*dDimIn);

if (MAE_test<Best_ MAE_test)[Best_ MAE_test=MAE_test;]
double MSE_test = 0.0;
for(unsigned int te=0; te<TestDim; te++)
[
for(unsigned int in=0; in<Dimln; in++)
[MSE_test += pow(ErrorMatrixTest(te,in),2.0);]
]
MSE_test = MSE_test/(dTestDim*dDimIn);
if (MSE_test<Best_MSE_test)[Best MSE_test=MSE_test;]

At this point the epochs loop is complete.

Results files

After the loop including all epochs is complete, the model is now ready to provide the final results: the
initial value of learning coefficient 1, the final value of the learning coefficient 1 (the final value after
running all Epochs1, which may include several cuts due to the adaptive procedure implemented), the seed

for random numbers used in this experiment, and MAE and MSE values obtained in this experiment.

Time

Once the loops on learning coefficients and seed are closed, the model executes the calculation of the time
(in seconds) spent, and includes this information in the last line of the results csv file. Finally, the results file

is closed.

time (&end); //TIME

LASCA Project — Final Report 217

Resultados_LrCoeff << difftime (end,start) << "seconds" << endl; //TIME

Resultados_LrCoeff.close();

71 Bibliography

Beale, M., Hagan, M., & Demuth, H. (2012). MATLAB Neural Network Toolbox - User's Guide (R2012a).

El-Sharkawi, M. A. (1995). Neural Network Application to High Performance Electric Drives Systems.
Paper presented at the Proceedings of the 1995 IEEE IECON 21st International Conference on
Industrial Electronics, Control, and Instrumentation.

Hagan, M. T., Demuth, H. B.,, & Beale, M. H. (1996). Neural Network Design. Boston and London: Pws
Pub.

Haykin, S. (1999). Neural Networks - A Comprehensive Foundation (2nd ed.). Ontario, Canada: Pearson
Education.

Miranda, V. (2007). Redes Neuronais — Treino por Retropropagacio (Texto de apoio a disciplina de
Controlo Difuso e Redes Neuronais do 52 ano da LEEC). Porto, Portugal.

Rumelhart, D. E., Hinton, G. E., & Williams, R.]. (1986). Learning Representations by back-propagating
errors. Letters to Nature, 323(9), 533-536.

Salman, M. (2008). Adaptive Learning Rate Versus Resilient BackPropagation for Numeral
Recognition. J. of alanbar university for pure science.

LASCA Project — Final Report 218

Comparative Analysis between ITL and
BackPropagation autoassociative neural networks in
power system applications

PTDC/EEA-EEL/104278/2008

Report LASCA / R7

72 1 Introduction

This report summarizes the results obtained from the performance comparison of autoassociative neural
networks trained with information criteria (Principe, 2010) and with classic backpropagation (Rumelhart,
Hinton, & Williams, 1986). The theoretical description of information criteria implemented is detailed in
report (Palma & Hora, 2012), and of backpropagation algorithm in report (Palma & Martins, 2012). A

detailed description and statistical analysis of the data used is provided in the report (Hora & Palma, 2012).

This report is organized as follows. Section 2 describes main aspects concerning the data used and the
respective normalization employed. Section 3 includes some test experiments conducted with the objective
of validating the implementation made in C++. This validation is further confirmed with the similarity of
results obtained from the C++ platform and the homologous experiment made in MATLAB. Finally, section
4 includes the results for two case studies, explored with the simulation of different scenarios. The anaylisis
of the reported experiments suggests that the ITL networks achieve more accurate results than the classic

backpropagation algorithm.

73 2 Data

Next results are related to data of wind velocity. Our total data is a set of ninety-six day types with 24 hours
each day (96 types x 10000 days for each type). For this work we use type 1 and 3 to construct the train and
test sets, as it is further detailed. Data was normalized to range between [—1,1] using the MinMax

normalization method (Palma & Hora, 2012; Palma & Martins, 2013). For each experiment, the data set

LASCA Project — Final Report 219

applied within the train phase included 1000 examples, and the data set applied to the test phase included

500 examples, different from the ones used within the train set.

In order to statistically verify that the two data sets derive from the same distribution, the Kolmogorov test
was applied, considering each hour separately. The base scenario uses data from the type 1 only. The train
data set is composed of 1000 type 1 examples, and the test data set is composed of 500 type 1 examples,
different from those used for train. According to (Hora & Palma, 2012), the assumption that both data sets

come from the same distributions is sustained.

The multimodal scenario applies data from type 1 and from type 3, into equal halves. Again, the train data
set has 1000 examples (500 of type 1 and 500 of type 3), and the test data set is composed of 500 examples
(250 from type 1 and 250 from type 3). Using a similar reasoning as the one former described for base
scenario, the Kolmogorov test was applied to infer on the similarity of distributions of the train and test
data sets. Again, the assumption of distribution similarity over the two data sets is kept. The multimodal
scenario has a second assumption concerning the data applied: the type 1 and type 3 data derive from
different distribution. The Kolmogorov test was used to prove that the type 1 distribution is different from

the type 3 distribution, and the dissimilarity of these two distributions was statistically significant.

74 3 Comparing BackPropagation in C++ with MATLAB

MATLAB Software provides the Neural Network Toolbox to simulate neural networks, which includes the
Back Propagation (PROP) method. To validate the classic PROP code developed in C++, some runs in both
approaches were compared. Table R7/ 1 summarizes the parameters adopted in all simulations compared.
Table R7/ 2 shows the performance criteria (mean absolute error MAE and mean squared error MSE) for

these runs, which were conducted under similar conditions.

Table R7/ 1 — Parameters adopted for the simulation of neural networks.

Network structure 24-12-24

Train Set 1000 examples

Epochs 1000

Random Seed 800 (same weights, bias and order in train set)
Activation Function tanh (= tansig @Matlab)

LASCA Project — Final Report 220

Momentum Rate 0

Goal 10-8 (stop criterium parameter @Matlab)

Learning Coefficient 0.1/0.01/0.001

Lr_dec 0.5/ 0.7 (Learning Coefficient Adaptive parameter @Matlab)
Lr_inc 1.01/ 1.05 (Learning Coefficient Adaptive parameter @Matlab)
Max_perf 1.04 (Performance function parameter @Matlab)

Table R7/ 2 - Errors obtained with the PROP implemented in C++ and with the MATLAB Neural Network Toolbox, considering the
same data, specifications and initialization.

PROP @ C++ PROP @MATLAB
Ir_dec Ir_inc Ic MAE MSE MAE MSE
0.5 1.05 0.01 0.183 0.0533 0.18739 0.05583
0.5 1.05 0.001 0.185596 0.0548047 (0.18917 0.05668
0.5 1.01 0.1 0.201862 0.0642166 (0.19003 0.05738
0.5 1.01 0.01 0.204377 0.0658088 [0.1961 0.06088
0.5 1.01 0.001 0.210361 0.0696838 | 0.2076 0.06789
0.7 1.05 0.1 0.182272 0.0529872 (0.18663 0.05547
0.7 1.05 0.01 0.190464 0.0576137 (0.18774 0.05616
0.7 1.05 0.001 0.18433 0.0541137 [0.1902 0.05755
0.7 1.01 0.1 0.198079 0.0619335 (0.19234 0.05864
0.7 1.01 0.01 0.203593 0.0653055 (0.20051 0.06344

LASCA Project — Final Report 221

0.7 1.01 0.001 _

In dark green cells are the best values for the programed runs that correspond to the same run in both

codes. Similarly, second best run (light green) and worst run (red) correspond to the same runs too.

75 4 Exploring ITL networks with Scenarios

In order to conclude on the performance obtained with the ITL concepts applied to neural networks, a base

scenario was defined, from where other scenarios were constructed (see Figure R7/1). Each new scenario

includes a single change, so the corresponding feature may be assessed.

Figure R7/ 1 - Experimental Derived Scenarios from Base Scenario.

The parameters used in Base Scenario are listed next:

Train Set: 1000 examples

Test Set: 500 examples

Number of ITL Seeds: 10

Number of Prop Seeds: 10

Sigma: calculated based on Silverman’s Rule

Number of ITL Epochs = 2000

Number of Prop Epochs = 2000

ITL Learning Coefficient (12 half), C1 ={0.005, 0.05,0.5,5} (initial values)

ITL Learning Coefficient (22 half), C2 ={0.005, 0.05,0.5,5} (initial values)

Prop Learning Coefficient (Supervised), C = {0.005, 0.05,0.5,5} (initial values)

LASCA Project — Final Report 222

Next table resumes the information specific of each experiment, taking the base scenario as a reference:

Table R7/ 3 - Experiments/Scenarios and its specifications.

Experiment Synaptic Weights
Architecture | Data

Code | Label Inicialization

T5 Normal Base | 24—12—-24 | Normal | random
Scenario

T6 Normal H16 | 24-16-24 | Normal | random
Scenario

T7 Normal H8 Scenario | 24—-8-24 Normal | random

T8 Normal PCA | 24-12-24 | Normal | PCA
Scenario

T9 Multi Base Scenario | 24—12-24 | Multi random

T10 Multi H16 Scenario 24-8-24 Multi random

T11 Multi H8 Scenario 24-16-24 | Multi random

T12 Multi PCA Scenario 24-12-24 | Multi PCA

Next, a big plan resuming the results obtained is presented for each above experiment. The results are split
in two groups: unsupervised and supervised. In first results line of big plan, corresponding to the scenario
label (eg, “Normal Base Scenario”), a graph showing the MSE Test versus Best MSE Train is presented for
each ITL method and for BackPropagation method. The end of column presents a comparative of these four

“1°") and in

graphs for MSE Test. Second line refers to the iterations needed to converge in first part (
second part (“2"“) of AA. The next line (“Error distribution”), presents a box plot, constructed for each
method, concerning the 10 seeds runned for the best learning rate combination achieved for the
experiment. “Cost Function” line presents the evolution of cost function (Cauchy-Schwartz Mutual
Information, Euclidean Distance Mutual Information and Entropy, respectively). This topic is not available

for Backpropagation. The table, in last column of this line, numerically resumes the MSE (train, test and

LASCA Project — Final Report 223

validation) results for the best seed. Experiments T6, T7, T8, T10, T11, T12 have an additional line, where a

comparison with base scenario is done, referring to the MSE Test.

The criterion to choose the best coefficients is the minimum MSE found on all simulations performed (10

for each combination of parameters) for each autoencoder.

76 5 Discussion and Conclusions

From experiment T5 we conclude that MI_ED (MSE Test=0.0379) performs better than the other approachs.
In fact, MI_ED, MI_CS and Entropy have similar results. The worst result was for the PROP method (MSE

Test=0.0647).

Concerning experiment T6, the training criterion returning the best performance was was Entropy, with a
MSE of 0.0255 referring to the test dataset. The second best criterion was the MI_ED, with a MSE Test of
0.0256. The criterion MI_CS returned a MSE Test value of 0.0298, followed by the PROP criterion, with a MSE Test

value of 0.0621.

Similar analyses were performed for other experiments. The methods found to better perform are MI_ED
and entropy, followed by MI_CS. The PROP algorithm performed worst than the ITL approachs for all
experiments, with the exception of experiment T8, where the synaptic weights were initialized with PCA,

leading PROP to quickly achieve high quality solutions.

Also, PROP and MI_ED were the methods associated with higher variability concerning the error

distribution (out of 10 runs).

MI_CS provided significantly faster simulations than the remainder ITL methods. For that reason, and
because the quality results were similar amont the all ITL approachs, that method was adopted to be

applied in future research.

77 Bibliography

Hora, ., & Palma, V. (2012). Analysis using descriptive statistics on the data used for the ITL networks
and on the data used in the Topology problem (Power System) INESC Interim Reports. Porto, Portugal:
INESC TEC.

Palma, V., & Hora,]. (2012). Theoretical Concepts of ITL Neural Networks INESC Interim Report. Porto,
Portugal.

Palma, V., & Martins, J. H. (2012). Theoretical Concepts of BackPropagation Neural Networks INESC
Interim Report. Porto, Portugal: INESC TEC.

LASCA Project — Final Report 224

Palma, V., & Martins, J. H. (2013). Training Neural Networks - Theory of Practical Issues INESC Interim
Report. Porto, Portugal: INESC TEC.

Principe, J. C. (2010). Information Theoretic Learning Renyi's Entropy and Kernel Perspectives:
Springer.

Rumelhart, D. E., Hinton, G. E., & Williams, R.]. (1986). Learning Representations by back-propagating
errors. Letters to Nature, 323(9), 533-536.

LASCA Project — Final Report 225

Annex 1 - Experiment T5

LASCA Project — Final Report 226

LASCA Project — Final Report 227

Annex 2 - Experiment T6

LASCA Project — Final Report 228

Annex 3 - Experiment T7

LASCA Project — Final Report 229

Annex 4 - Experiment T8

LASCA Project — Final Report 230

Annex 5 - Experiment T9

LASCA Project — Final Report 231

Annex 6 - Experiment T10

LASCA Project — Final Report 232

Annex 7 - Experiment T11

LASCA Project — Final Report 233

Annex 8 - Experiment T12

LASCA Project — Final Report 234

Analysis using descriptive statistics on the data used for
the ITL networks and on the data used in the Topology
problem (Power system)

PTDC/EEA-EEL/104278/2008

Report LASCA / R8

78 Abstract

The training of neural networks must consider three datasets: train, test and validation. For each
experiment, the three datasets must belong to the same population. The assessment of populations’
similarity for these three datasets is the main goal of this report. In this work, the Smirnov and Cramér-von
Mises statistical tests were employed to three case studies. The analysis here presented is conducted on a
neuron basis, meaning that the train, test and validation datasets are analyzed considering each neuron

separately.

79 1 Non Parametric tests of goodness of fit

In order to infer on the similarity of the populations among the train, test and validation datasets, two non-

parametric tests were applied: the Smirnov test and Cramér-von Mises (CvM) test.

These tests are non-parametric statistical procedures which use the maximum vertical distance between
two cumulative functions to infer on the similarity between the two populations, see (Conover, 1980).
Therefore, the tests were applied to each of the possible combinations over data sets: i) train set vs test set,

ii) train set vs validation set, and iii) test set vs validation set.

The null hypothesis Hg is that the two data sets arrive from similar populations. The alternative hypothesis
H,is that the two data sets arrive from different populations. We aim at rejecting the alternative

hypothesis, which occurs for p-values higher than an alpha (significance level) considered.

This approach is the most adequate due to the following aspects:

LASCA Project — Final Report 235

e the data sets are of distinct dimensions (which precludes the application of non-parametric tests on
several independent samples, such as the Birnbaum-Hall test or the k-sample Smirnov test);

e the assessment is made towards an unknown distribution (and not a specified one as it would be
the case for using the Kolmogorov goodness of fit test and its variants such as Lilliefors or Shapiro-

Wilk);

The assumptions considered are: the randomness of the samples, the independence of the samples, the

variables are continuous and the data is ordinal.

Let us consider the first sample (X;,X,,:+,X,), which follows an unknown distribution F(x), and the
second sample (Y;,Y5,:++,Y,), which follows a second unknown distribution G(x). The two samples are

composed of different amount of elements for the general case.

Considering the following definition of empirical distribution provided by (Conover, 1980), pp. 69: “Let
(Xy,X5,++,X,) be a random sample. The empirical distribution function S(x) is a function of x, which
equals the fraction of X;s that are less than or equal to x for each x, —oco < x < +00.” Then, let be S; (x)

the empirical distribution of the first sample, and S, (x) the empirical distribution of the second sample.

79.1 1.1 Formulation applied with the Smirnov test

The statistical test is formulated as specified in eq. R8/(1). The null hypothesis is that the two populations

are similar, and the alternative hypothesis is that the two populations are different.

{HO:Sl(x) = S,(x)
H;:S1(x) # S,(x) eq. R8/(1)

The test statistic for this test is specified as the greatest vertical distance (supreme) between the empirical
distribution of the first sample and the empirical distribution of the second sample, shown in expression

(2).

Ts = supy|S; (x) — Sp(xX)| eq. R8/(2)

The decision rule for a pre specified significance level a is to reject Hy when the test statistic T (2) exceeds
its quantile w,_,. For large samples, as is the case for this study, the quantiles are calculated as presented

in Table R8/ 1.

Table R8/ 1 - Quantiles for a two-sided Smirnov test for different significance levels.

o] 20% 10% 5% 2% 1%

LASCA Project — Final Report 236

,m+n ’m+n fm+n ;m+n m+n
Wi—q 1.07 |—— 122 |—— 136 [—— 152 [—— 1.63
m-n m-n m-n m-n m-n

79.2 1.2 Formulation applied with the Cramer-von Mises test

The statistical formulation for this test is similar to the one made for the Smirnov test. Accordingly, the
formulation of the hypothesis is as specified in eq. R8/(3), where the null hypothesis tests whether the two
samples arrive from similar populations, and the alternative hypothesis tests whether the two samples

arrived from distinct populations.

{Ho:Sl(x) = 5,(x)
Hy: S, (x) # S, (x) eq. R8/(3)

The test statistic for the CvM test is specified as presented in expression (4).
n

D IS0 = S (01 +) 15106 = S, ()P eq. R8/(2)

i=1 j=1

ro__mmn
M7 (m + n)?2

The decision rule for a pre specified significance level a is to reject Hy when the test statistic T¢y, (4)
exceeds its quantile w,_,. For large samples, as is the case for this study, the quantiles are calculated as

presented in Table R8/ 2.

Table R8/ 2 - Quantiles for a two-sided Cramer-von Mises test for different significance levels (for any dimension of large
samples).

o 20% 10% 5% 1% 0.1%
W1_g 0.241 0.347 0.461 0.743 1.168

80 2 Statistical analysis of the Type 1 Data (case study “normal”)

Data from wind power forecast. The train dataset contains 1000 examples, the test dataset and validation
dataset contain 500 examples each. Table R8/3 presents the summary of the statistical tests conducted,
where “yes” indicates the acceptance of the null hypothesis (the empirical cumulative distribution is
statistically similar between the two data sets) and “no” relates to the rejection of the null hypothesis (the
empirical cumulative distribution is statistically different between the two data sets), for a significance level

of 5%.

LASCA Project — Final Report 237

Table R8/ 3 - Summary of the statistic test conducted, “yes” indicates the acceptance of the null hypothesis and “no” the
rejection of the null hypothesis (a=5%).

Train-Test: Train-Valid: Test-Valid

Neuron Smirnov CvM Smirnov CvM Smirnov CvM

1 yes yes yes yes yes yes

2 yes yes yes yes yes yes

3 yes no yes yes no yes

4 yes yes yes yes yes yes

5 yes yes yes yes yes yes

6 yes yes yes yes yes yes

7 yes yes yes yes yes yes

8 yes yes yes yes yes yes

9 yes yes yes yes yes yes

10 yes yes yes yes yes yes

11 yes yes yes yes yes yes

12 yes no yes yes yes yes

13 no no yes yes yes yes

14 yes yes yes yes yes yes

15 yes yes yes yes yes yes

16 yes yes yes yes yes yes

17 no no yes yes yes yes

18 yes yes yes yes yes yes

19 no no yes yes yes yes

20 no no yes yes yes yes

21 yes no yes yes no no

22 no no yes yes yes yes

23 yes yes yes yes yes yes

24 no no yes yes no no

Table R8/ 4 — Results of statistical tests for case study “normal”, neuron 1.

Type 1-Neuron 1 Train-Test Train-Valid Test-Valid
Smirnov p-value 0.5990 0.8844 0.6654
CvM Test Statistic 0.1270 0.0619 0.1000

LASCA Project — Final Report 238

The null hypothesis is accepted in all cases for both tests, considering a significance level of 5%. Therefore,

the population similarity is assumed among all the data sets considered (see Table R8/ 4).

Table R8/ 5 - Results of statistical tests for case study “normal”, neuron 2.

Type 1 - Neuron 2 Train-Test Train-Valid Test-Valid
Smirnov p-value 0.3512 0.4002 0.0815
CvM Test Statistic 0.2475 0.1319 0.3902

The null hypothesis is accepted in all cases for both tests, considering a significance level of 5%. Therefore,

the population similarity is assumed among all the data sets considered (see Table R8/ 5).

Table R8/ 6 - Results of statistical tests for case study “normal”, neuron 3.
Type 1 - Neuron 3 Train-Test Train-Valid Test-Valid
Smirnov p-value 0.0837 0.9683 0.0496
CvM Test Statistic 0.5367 0.0371 0.4508

LASCA Project — Final Report 239

For the Smirnov test, the null hypothesis is accepted for the cases: Train-Test and Train-Validation,
considering a significance level of 5%. The null hypothesis is rejected for the case Test-Validation, moreover
the similarity of empirical cumulative density functions is not statistically significant in this case. For the
CvM test, the null hypothesis is accepted for the cases Train-Validation and Test- Validation, considering a

significance level of 5%. The null hypothesis is rejected for the case Train-Test, for a significance level of 5%

(see Table R8/ 6).

Table R8/ 7 - Results of statistical tests for case study “normal”, neuron 4.

Type 1 - Neuron 4 Train-Test Train-Valid Test-Valid
Smirnov p-value 0.6911 0.8610 0.9780
CvM Test Statistic 0.0636 0.0710 0.0367

The null hypothesis is accepted in all cases for both tests, considering a significance level of 5%. Therefore,

the population similarity is assumed among all the data sets considered (see Table R8/ 7).

LASCA Project — Final Report 240

Table R8/ 8 - Results of statistical tests for case study “normal”, neuron 5.

Type 1 - Neuron 5 Train-Test Train-Valid Test-Valid
Smirnov p-value 0.9563 0.9251 0.7699
CvM Test Statistic 0.0430 0.0507 0.0737

The null hypothesis is accepted in all cases for both tests, considering a significance level of 5%. Therefore,

the population similarity is assumed among all the data sets considered (see Table R8/ 8).

Table R8/ 9 - Results of statistical tests for case study “normal”, neuron 6.

Type 1 - Neuron 6 Train-Test Train-Valid Test-Valid
Smirnov p-value 0.7515 0.1813 0.4595
CvM Test Statistic 0.0854 0.2058 0.1524

The null hypothesis is accepted in all cases for both tests, considering a significance level of 5%. Therefore,

the population similarity is assumed among all the data sets considered (Table R8/ 9).

LASCA Project — Final Report 241

Table R8/ 10 - Results of statistical tests for case study “normal”, neuron 7.

Type 1 - Neuron 7 Train-Test Train-Valid Test-Valid
Smirnov p-value 0.4531 0.7807 0.9022
CvM Test Statistic 0.0984 0.0759 0.0484

The null hypothesis is accepted in all cases for both tests, considering a significance level of 5%. Therefore,

the population similarity is assumed among all the data sets considered (Table R8/ 10).

Table R8/ 11 - Results of statistical tests for case study “normal”, neuron 8.

Type 1 - Neuron 8 Train-Test Train-Valid Test-Valid
Smirnov p-value 0.1303 0.4262 0.2574
CvM Test Statistic 0.2007 0.0895 0.1160

The null hypothesis is accepted in all cases for both tests, considering a significance level of 5%. Therefore,

the population similarity is assumed among all the data sets considered (see Table R8/ 11).

LASCA Project — Final Report 242

Table R8/ 12 - Results of statistical tests for case study “normal”, neuron 9.

Type 1 - Neuron 9 Train-Test Train-Valid Test-Valid
Smirnov p-value 0.2854 0.5095 0.2574
CvM Test Statistic 0.2067 0.0880 0.2369

The null hypothesis is accepted in all cases for both tests, considering a significance level of 5%. Therefore,

the population similarity is assumed among all the data sets considered (see Table R8/ 12).

Table R8/ 13 - Results of statistical tests for case study “normal”, neuron 10.

Type 1 - Neuron 10 Train-Test Train-Valid Test-Valid
Smirnov p-value 0.7515 0.1541 0.1294
CvM Test Statistic 0.0810 0.3312 0.2933

The null hypothesis is accepted in all cases for both tests, considering a significance level of 5%. Therefore,

the population similarity is assumed among all the data sets considered (see Table R8/ 13).

LASCA Project — Final Report 243

Table R8/ 14 - Results of statistical tests for case study “normal”, neuron 11.

Type 1 - Neuron 11 Train-Test Train-Valid Test-Valid
Smirnov p-value 0.3512 0.9059 0.9600
CvM Test Statistic 0.1412 0.0753 0.0389

The null hypothesis is accepted in all cases for both tests, considering a significance level of 5%. Therefore,

the population similarity is assumed among all the data sets considered (see Table R8/ 14).

Table R8/ 15 - Results of statistical tests for case study “normal”, neuron 12.

Type 1 - Neuron 12 Train-Test Train-Valid Test-Valid
Smirnov p-value 0.1673 0.1962 0.8632
CvM Test Statistic 0.4616 0.2771 0.1039

For the Smirnov test, the null hypothesis is accepted in all cases, considering a significance level of 5%.
Therefore, the population similarity is assumed among all the data sets considered. For the CvM test, the
null hypothesis is accepted for the cases Train-Validation and Test-Validation considering a significance

level of 5%. The null hypothesis is rejected for the case Train-Test (see Table R8/ 15).

LASCA Project — Final Report 244

Table R8/ 16 - Results of statistical tests for case study “normal”, neuron 13.

Type 1 — Neuron 13 Train-Test Train-Valid Test-Valid
Smirnov p-value 0.0203 0.1096 0.9347
CvM Test Statistic 0.6430 0.4461 0.0702

Both tests return the acceptance of the cases Train-Validation and Test-Validation, considering a
significance level of 5%. Both tests rejected the null hypothesis for the case Train-Test, from where the

similarity of the two populations cannot be inferred (see Table R8/ 16).

Table R8/ 17 - Results of statistical tests for case study “normal”, neuron 14.
Type 1 - Neuron 14 Train-Test Train-Valid Test-Valid
Smirnov p-value 0.7807 0.8088 0.9895
CvM Test Statistic 0.0863 0.0590 0.0329

The null hypothesis is accepted in all cases for both tests, considering a significance level of 5%. Therefore,

the population similarity is assumed among all the data sets considered (see Table R8/ 17).

LASCA Project — Final Report 245

Table R8/ 18 - Results of statistical tests for case study “normal”, neuron 15.

Type 1 — Neuron 15 Train-Test Train-Valid Test-Valid
Smirnov p-value 0.1541 0.9419 0.1294
CvM Test Statistic 0.2297 0.0330 0.1927

The null hypothesis is accepted in all cases for both tests, considering a significance level of 5%. Therefore,

the population similarity is assumed among all the data sets considered (see Table R8/ 18).

Table R8/ 19 - Results of statistical tests for case study “normal”, neuron 16.

Type 1 - Neuron 16 Train-Test Train-Valid Test-Valid
Smirnov p-value 0.3063 0.7807 0.2262
CvM Test Statistic 0.2447 0.0775 0.3193

The null hypothesis is accepted in all cases for both tests, considering a significance level of 5%. Therefore,

the population similarity is assumed among all the data sets considered (see Table R8/ 19).

LASCA Project — Final Report 246

Table R8/ 20 - Results of statistical tests for case study “normal”, neuron 17.

Type 1 - Neuron 17 Train-Test Train-Valid Test-Valid
Smirnov p-value 0.0425 0.1962 0.2917
CvM Test Statistic 0.5387 0.2775 0.1428

Both tests return the acceptance of the null hypothesis for the cases Train-Validation and Test-Validation,
considering a significance level of 5%. Both tests replied with the rejection of the null hypothesis for the

case Train-Test, from where the similarity of these two populations cannot be ascertain (see Table R8/ 20).

Table R8/ 21 - Results of statistical tests for case study “normal”, neuron 18.
Type 1 - Neuron 18 Train-Test Train-Valid Test-Valid
Smirnov p-value 0.1096 0.8357 0.5085
CvM Test Statistic 0.3162 0.0472 0.2197

The null hypothesis is accepted in all cases for both tests, considering a significance level of 5%. Therefore,

the population similarity is assumed among all the data sets considered (see Table R8/ 21).

LASCA Project — Final Report 247

Table R8/ 22 - Results of statistical tests for case study “normal”, neuron 19.

Type 1 - Neuron 19 Train-Test Train-Valid Test-Valid
Smirnov p-value 0.0181 0.3752 0.4595
CvM Test Statistic 0.5278 0.1301 0.1545

Both tests replied with the acceptance of the null hypothesis for the cases Train-Validation and
Test-Validation, considering a significance level of 5%. Both tests replied with the rejection of the

null hypothesis for the case Train-Test, indicating the non-similarity of these two populations (see
Table R8/ 22).

Table R8/ 23 - Results of statistical tests for case study “normal”, neuron 20.

Type 1 - Neuron 20 Train-Test Train-Valid Test-Valid
Smirnov p-value 0.0470 0.4809 0.1497
CvM Test Statistic 0.5842 0.1144 0.3665

LASCA Project — Final Report 248

Both tests return the acceptance of the null hypothesis for the cases Train-Validation and Test-Validation,
considering a significance level of 5%. Both tests returned the rejection of the null hypothesis for the case

Train-Test, indicating the non-similarity of these populations (see Table R8/ 23).

Table R8/ 24 - Results of statistical tests for case study “normal”, neuron 21.

Type 1 - Neuron 21 Train-Test Train-Valid Test-Valid
Smirnov p-value 0.0631 0.5686 0.0496
CvM Test Statistic 0.4614 0.0876 0.5855

For the Smirnov test, the null hypothesis is accepted for the cases Train-Test and Train-Validation. This test
rejected the null hypothesis for the case Test-Validation. The CvM test only accepted the null hypothesis

for the case Train-Validation (see Table R8/ 24).

LASCA Project — Final Report 249

Table R8/ 25 - Results of statistical tests for case study “normal”, neuron 22.

Type 1 - Neuron 22 Train-Test Train-Valid Test-Valid
Smirnov p-value 0.0425 0.4262 0.5085
CvM Test Statistic 0.5151 0.1138 0.1785

Both tests return the acceptance of the null hypothesis for the cases Train-Validation and Test-Validation,
considering a significance level of 5%. Both tests returned the rejection of the null hypothesis for the case

Train-Test, indicating the non-similarity of these two populations (see Table R8/ 25).

Table R8/ 26 - Results of statistical tests for case study “normal”, neuron 23.
Type 1 - Neuron 23 Train-Test Train-Valid Test-Valid
Smirnov p-value 0.5387 0.8357 0.5596
CvM Test Statistic 0.1567 0.0804 0.1463

The null hypothesis is accepted in all cases for both tests, considering a significance level of 5%. Therefore,

the population similarity is assumed among all the data sets considered (see Table R8/ 26).

LASCA Project — Final Report 250

Table R8/ 27 - Results of statistical tests for case study “normal”, neuron 24.

Type 1 - Neuron 24 Train-Test Train-Valid Test-Valid
Smirnov p-value 0.0017 0.3063 0.0000
CvM Test Statistic 1.1602 0.1371 1.1341

Both tests returned the rejection of the null hypothesis for the cases Train-Test and Test-Validation, and the
acceptance of the null hypothesis for the case Train-Validation, with a significance level of 5%. For this

neuron, the similarity among data sets can only be stated for the case Train-Validation (see Table R8/ 27).

81 3 ITL networks: Data of type 1 & 3 (case study “multi”)

The train dataset contains 1000 examples, the test dataset and validation dataset contain 500 examples
each. This section presents a summary analysis on these three data sets. Each set contains data from types
1 and 3, organized alternately (one example “type 1”, followed by one example “type 3”, followed by an

example “typel”, and so on).

LASCA Project — Final Report 251

Table R8/ 28 - Summary of the statistic test conducted, “yes” indicates the acceptance of the null hypothesis and “no” the
rejection of the null hypothesis (a=5%).

Train- Train- Test-
Test: Valid: Valid

Neuron | Smirnov | CvM Smirnov CvM | Smirnov | CvM
1 yes yes yes yes yes yes
2 yes yes yes yes yes yes
3 yes yes yes yes yes yes
4 yes yes yes yes yes yes
5 yes yes yes yes yes yes
6 yes yes yes yes yes yes
7 yes yes yes yes yes yes
8 yes yes yes yes yes yes
9 yes yes yes yes yes yes
10 yes yes yes yes yes yes
11 yes yes yes yes yes yes
12 yes yes yes yes yes yes
13 yes yes yes yes yes yes
14 yes yes yes yes yes yes
15 yes yes yes yes yes yes
16 no yes yes yes yes yes
17 yes yes yes yes yes yes
18 yes yes yes yes yes yes
19 yes yes yes yes yes yes
20 yes yes no no yes yes
21 yes yes yes yes yes yes
22 yes yes yes yes yes yes
23 yes yes yes yes yes yes
24 yes yes yes yes yes yes

LASCA Project — Final Report 252

Table R8/ 29 - Results of statistical tests for case study “multi”, neuron 1.

Type 1&3 — Neuron 1 Train-Test Train-Valid Test-Valid
Smirnov p-value 0.0917 0.8844 0.6121
CvM Test Statistic 0.2736 0.0523 0.1136

The null hypothesis is accepted in all cases for both tests, considering a significance level of 5%. Therefore,

the population similarity is assumed among all the data sets considered (see Table R8/ 29).

Table R8/ 30 - Results of statistical tests for case study “multi”, neuron 2.

Type 1&3 - Neuron 2 Train-Test Train-Valid Test-Valid
Smirnov p-value 0.5387 0.3752 0.7184
CvM Test Statistic 0.1216 0.0851 0.0789

The null hypothesis is accepted in all cases for both tests, considering a significance level of 5%. Therefore,

the population similarity is assumed among all the data sets considered (see Table R8/ 30).

LASCA Project — Final Report 253

Table R8/ 31 - Results of statistical tests for case study “multi”, neuron 3.

Type 1&3 — Neuron 3 Train-Test Train-Valid Test-Valid
Smirnov p-value 0.3752 0.5095 0.5085
CvM Test Statistic 0.2217 0.1241 0.1029

The null hypothesis is accepted in all cases for both tests, considering a significance level of 5%. Therefore,

the population similarity is assumed among all the data sets considered (see Table R8/ 31).

Table R8/ 32 - Results of statistical tests for case study “multi”, neuron 4.

Type 1&3 — Neuron 4 Train-Test Train-Valid Test-Valid
Smirnov p-value 0.9683 0.4002 0.8186
CvM Test Statistic 0.0358 0.1272 0.0462

The null hypothesis is accepted in all cases for both tests, considering a significance level of 5%. Therefore,

the population similarity is assumed among all the data sets considered (see Table R8/ 32).

LASCA Project — Final Report 254

Table R8/ 33 - Results of statistical tests for case study “multi”, neuron 5.

Type 1&3 — Neuron 5 Train-Test Train-Valid Test-Valid
Smirnov p-value 0.9251 0.3512 0.8632
CvM Test Statistic 0.0489 0.1207 0.0460

The null hypothesis is accepted in all cases for both tests, considering a significance level of 5%. Therefore,

the population similarity is assumed among all the data sets considered (see Table R8/ 33).

Table R8/ 34 - Results of statistical tests for case study “multi”, neuron 6.

Type 1&3 — Neuron 6 Train-Test Train-Valid Test-Valid
Smirnov p-value 0.7807 0.8844 0.6654
CvM Test Statistic 0.0837 0.0359 0.0743

The null hypothesis is accepted in all cases for both tests, considering a significance level of 5%. Therefore,

the population similarity is assumed among all the data sets considered (see Table R8/ 34).

LASCA Project — Final Report 255

Table R8/ 35 - Results of statistical tests for case study “multi”, neuron 7.

Type 1&3 — Neuron 7 Train-Test Train-Valid Test-Valid
Smirnov p-value 0.5686 0.1962 0.2574
CvM Test Statistic 0.0860 0.1526 0.2090

The null hypothesis is accepted in all cases for both tests, considering a significance level of 5%. Therefore,

the population similarity is assumed among all the data sets considered (see Table R8/ 35).

Table R8/ 36 - Results of statistical tests for case study “multi”, neuron 8.

Type 1&3 - Neuron 8 Train-Test Train-Valid Test-Valid
Smirnov p-value 0.5686 0.9563 0.3696
CvM Test Statistic 0.0870 0.0354 0.1149

The null hypothesis is accepted in all cases for both tests, considering a significance level of 5%. Therefore,

the population similarity is assumed among all the data sets considered (see Table R8/ 36).

LASCA Project — Final Report 256

Table R8/ 37 - Results of statistical tests for case study “multi”, neuron 9.

Type 1&3 — Neuron 9 Train-Test Train-Valid Test-Valid
Smirnov p-value 0.8844 0.5990 0.8186
CvM Test Statistic 0.0530 0.0588 0.0511

The null hypothesis is accepted in all cases for both tests, considering a significance level of 5%. Therefore,

the population similarity is assumed among all the data sets considered (see Table R8/ 37).

Table R8/ 38 - Results of statistical tests for case study “multi”, neuron 10.

Type 1&3 — Neuron 10 Train-Test Train-Valid Test-Valid
Smirnov p-value 0.8844 0.2656 0.3696
CvM Test Statistic 0.0332 0.1585 0.1020

The null hypothesis is accepted in all cases for both tests, considering a significance level of 5%. Therefore,

the population similarity is assumed among all the data sets considered (see Table R8/ 38).

LASCA Project — Final Report 257

Table R8/ 39 - Results of statistical tests for case study “multi”, neuron 11.

Type 1&3 — Neuron 11 Train-Test Train-Valid Test-Valid
Smirnov p-value 0.9945 0.9251 0.9347
CvM Test Statistic 0.0240 0.0404 0.0493

The null hypothesis is accepted in all cases for both tests, considering a significance level of 5%. Therefore,

the population similarity is assumed among all the data sets considered (see Table R8/ 39).

Table R8/ 40 - Results of statistical tests for case study “multi”, neuron 12.

Type 1&3 — Neuron 12 Train-Test Train-Valid Test-Valid
Smirnov p-value 0.6296 0.1096 0.6654
CvM Test Statistic 0.1234 0.2504 0.0868

The null hypothesis is accepted in all cases for both tests, considering a significance level of 5%. Therefore,

the population similarity is assumed among all the data sets considered (see Table R8/ 40).

LASCA Project — Final Report 258

Table R8/ 41 - Results of statistical tests for case study “multi”, neuron 13.

Type 1&3 — Neuron 13 Train-Test Train-Valid Test-Valid
Smirnov p-value 0.4531 0.2121 0.7699
CvM Test Statistic 0.1526 0.3094 0.1170

The null hypothesis is accepted in all cases for both tests, considering a significance level of 5%. Therefore,

the population similarity is assumed among all the data sets considered (see Table R8/ 41).

Table R8/ 42 - Results of statistical tests for case study “multi”, neuron 14.

Type 1&3 - Neuron Train-Test Train-Valid Test-Valid
14

Smirnov p-value 0.7807 0.3512 0.9347

CvM Test Statistic 0.0645 0.1582 0.0390

The null hypothesis is accepted in all cases for both tests, considering a significance level of 5%. Therefore,

the population similarity is assumed among all the data sets considered (see Table R8/ 42).

LASCA Project — Final Report 259

Table R8/ 43 - Results of statistical tests for case study “multi”, neuron 15.

Type 1&3 — Neuron 15 Train-Test Train-Valid Test-Valid
Smirnov p-value 0.9419 0.9779 0.9600
CvM Test Statistic 0.0511 0.0380 0.0536

The null hypothesis is accepted in all cases for both tests, considering a significance level of 5%. Therefore,

the population similarity is assumed among all the data sets considered (see Table R8/ 43).

Table R8/ 44 - Results of statistical tests for case study “multi”, neuron 16.

Type 1&3 — Neuron 16 Train-Test Train-Valid Test-Valid
Smirnov p-value 0.0346 0.1962 0.8186
CvM Test Statistic 0.4327 0.2197 0.0649

The Smirnov test returned the rejection of the null hypothesis for the case Train-Test, with a significance
level of 5%. For all the remainder cases, both tests returned the acceptance of the null hypothesis for the

same level of significance (see Table R8/ 44).

LASCA Project — Final Report 260

Table R8/ 45 - Results of statistical tests for case study “multi”, neuron 17.

Type 1&3 — Neuron 17 Train-Test Train-Valid Test-Valid
Smirnov p-value 0.5686 0.4531 0.8186
CvM Test Statistic 0.1594 0.2018 0.0548

The null hypothesis is accepted in all cases for both tests, considering a significance level of 5%. Therefore,

the population similarity is assumed among all the data sets considered (see Table R8/ 45).

Table R8/ 46 - Results of statistical tests for case study “multi”, neuron 18.

Type 1&3 — Neuron 18 Train-Test Train-Valid Test-Valid
Smirnov p-value 0.5387 0.0837 0.6121
CvM Test Statistic 0.1413 0.4085 0.1175

The null hypothesis is accepted in all cases for both tests, considering a significance level of 5%. Therefore,

the population similarity is assumed among all the data sets considered (see Table R8/ 46).

LASCA Project — Final Report 261

Table R8/ 47 - Results of statistical tests for case study “multi”, neuron 19.

Type 1&3 — Neuron 19 Train-Test Train-Valid Test-Valid
Smirnov p-value 0.1673 0.2289 0.5596
CvM Test Statistic 0.4030 0.3048 0.0954

The null hypothesis is accepted in all cases for both tests, considering a significance level of 5%. Therefore,

the population similarity is assumed among all the data sets considered (see Table R8/ 47).

Table R8/ 48 - Results of statistical tests for case study “multi”, neuron 20.

Type 1&3 — Neuron 20 Train-Test Train-Valid Test-Valid
Smirnov p-value 0.1003 0.0425 0.7699
CvM Test Statistic 0.3608 0.5032 0.0431

Both tests replied with the rejection of the null hypothesis for the case Train-Validation, and with the

acceptance of the null hypothesis for the cases Train-Test and Test-Validation, considering a significance

level of 5% (see Table R8/ 48).

LASCA Project — Final Report 262

Table R8/ 49 - Results of statistical tests for case study “multi”, neuron 21.

Type 1&3 — Neuron 21 Train-Test Train-Valid Test-Valid
Smirnov p-value 0.0763 0.7216 0.5085
CvM Test Statistic 0.4324 0.1318 0.1130

The null hypothesis is accepted in all cases for both tests, considering a significance level of 5%. Therefore,

the population similarity is assumed among all the data sets considered (see Table R8/ 49).

Table R8/ 50 - Results of statistical tests for case study “multi”, neuron 22.

Type 1&3 — Neuron 22 Train-Test Train-Valid Test-Valid
Smirnov p-value 0.3063 0.3752 0.7699
CvM Test Statistic 0.2365 0.1127 0.0880

The null hypothesis is accepted in all cases for both tests, considering a significance level of 5%. Therefore,

the population similarity is assumed among all the data sets considered (see Table R8/ 50).

LASCA Project — Final Report 263

Table R8/ 51 - Results of statistical tests for case study “multi”, neuron 23.

Type 1&3 — Neuron 23 Train-Test Train-Valid Test-Valid
Smirnov p-value 0.4262 0.1541 0.8186
CvM Test Statistic 0.1617 0.2143 0.0714

The null hypothesis is accepted in all cases for both tests, considering a significance level of 5%. Therefore,

the population similarity is assumed among all the data sets considered (see Table R8/ 51).

Table R8/ 52 - Results of statistical tests for case study “multi”, neuron 24.

Type 1&3 — Neuron 24 Train-Test Train-Valid Test-Valid
Smirnov p-value 0.0573 0.5387 0.1979
CvM Test Statistic 0.3706 0.0804 0.2756

The null hypothesis is accepted in all cases for both tests, considering a significance level of 5%. Therefore,

the population similarity is assumed among all the data sets considered (see Table R8/ 52).

LASCA Project — Final Report 264

82 4 Topology data (Case study “power system”)

The data used under the “Topology problem” relates to 18 neurons. For each state of the system (Open and

Close), three data sets are considered: train, test and validation. The number of examples composing each

data set is summarized in Table R8/ 53.

Table R8/ 53 - Number of exemples composing each data set.

Data set Open System Closed System
Train 4000 4000
Test 956 1044

Validation 5067 4933

The train and test datasets are used to perform the training of an autoencoder (the evolution of epochs is

made using train dataset, and the overfitting assessment is made using the test dataset). This procedure is

performed following a “holdout” approach (or split sample test).

Figure R8/ 1 - IEEE RTS 24 (IEEE RTS Task Force of APM Subcommittee, 1979) with identification of breakers’ position.

The validation dataset is used to calculate the number of fails, knowing that this dataset is independent

from the training process. The results concerning the application of statistical test is summarized in Table

R8/ 54.

LASCA Project — Final Report

265

Table R8/ 54 - Summary of the statistic test conducted, “yes” indicates the acceptance of the null hypothesis and “no” the
rejection of the null hypothesis (a=5%).

Open Closed
Train-Test: Train-Valid: Test-Valid Train-Test: Train-Valid: Test-Valid

Smirnov CvM Smirnov CvM Smirnov CvM Smirnov CvM Smirnov CvM Smirnov CvM

1 yes yes yes yes yes yes yes yes yes yes yes yes

2 yes yes yes yes yes yes yes yes no no yes yes

3 yes yes yes yes yes yes yes yes yes yes yes yes

4 yes yes yes yes yes yes yes yes yes yes yes yes

5 yes yes yes yes yes yes yes yes yes yes yes yes

6 no no yes yes yes yes yes yes yes yes yes yes

7 yes yes yes yes yes yes yes yes yes yes yes yes

8 yes yes yes yes yes yes yes yes yes yes yes yes

9 yes yes yes yes yes yes yes yes yes yes yes yes

10 yes yes no no yes yes yes yes yes yes yes yes
11 yes yes yes yes yes yes yes yes no no yes yes
12 yes yes yes yes yes yes yes yes no no yes yes
13 yes yes yes yes yes yes yes yes yes yes yes yes
14 yes yes yes yes yes yes yes yes yes yes yes yes
15 yes yes no no yes yes yes yes yes yes yes yes
16 yes yes yes yes yes yes yes yes yes yes yes yes
17 yes yes yes yes yes yes yes yes yes yes yes yes
18 yes yes yes yes yes yes yes yes yes yes yes yes

LASCA Project — Final Report 266

Table R8/ 55 - Results of statistical tests for case study “power system”, neuron 1.

Open | Smirnov p-value CVYM TS Closed | Smirnov p-value CYM TS
Train - Test 0.8383 0.0498 Train - Test 0.7454 0.0618
Train-Valid 0.5493 0.0722 Train-Valid 0.0552 0.3695
Test - Valid 0.9539 0.0475 Test - Valid 0.2619 0.2518

Neuron 1 has the label P_inj3 and relates to: active power injection. The null hypothesis is accepted in all
cases for both tests, considering a significance level of 5%. Therefore, the population similarity is assumed

among all the data sets considered (see Table R8/ 55).

LASCA Project — Final Report 267

Table R8/ 56 - Results of statistical tests for case study “power system”, neuron 2.

Open | Smirnov p-value CVYM TS Closed | Smirnov p-value CVM TS
Train - Test 0.9772 0.0456 Train - Test 0.4139 0.1017
Train-Valid 0.7114 0.0551 Train-Valid 0.0148 0.5819
Test - Valid 0.9703 0.0329 Test - Valid 0.1437 0.4290

Neuron 2 has the label P_inj9 and relates to active power injection. Both tests replied with the rejection of
the null hypothesis for the case Train Validation within the closed system, consequently the similarity amid
these data sets is not assumed. Both tests returned with the acceptance of the null hypothesis for all the
remainder cases, which indicates the population similarity, always considering a significance level of 5%

(see Table R8/ 56).

LASCA Project — Final Report 268

Table R8/ 57 - Results of statistical tests for case study “power system”, neuron 3.

Open | Smirnov p-value CvM TS Closed Smirnov p-value CvM TS
Train - Test 0.8827 0.0814 Train - Test 0.9017 0.0339
Train-Valid 0.8102 0.0979 Train-Valid 0.1089 0.3895
Test - Valid 0.8337 0.0515 Test - Valid 0.3744 0.2417

Neuron 3 has the label Q_inj3 and relates to reactive power injection. The null hypothesis is accepted in all
cases for both tests, considering a significance level of 5%. Therefore, the population similarity is assumed

among all the data sets considered (see Table R8/ 57).

LASCA Project — Final Report 269

Table R8/ 58 - Results of statistical tests for case study “power system”, neuron 4.

Open | Smirnov p-value CvM TS Closed Smirnov p-value CvM TS
Train - Test 0.8392 0.0425 Train - Test 0.5153 0.1312
Train-Valid 0.7193 0.0487 Train-Valid 0.1452 0.3277
Test - Valid 0.8736 0.0632 Test - Valid 0.1266 0.3076

Neuron 4 has the label Q_inj9 and relates to reactive power injection. The null hypothesis is accepted in all
cases for both tests, considering a significance level of 5%. Therefore, the population similarity is assumed

among all the data sets considered (see Table R8/ 58).

LASCA Project — Final Report 270

Table R8/ 59 - Results of statistical tests for case study “power system”, neuron 5.

Open | Smirnov p-value CvM TS Closed Smirnov p-value CvM TS
Train - Test 0.1096 0.2203 Train - Test 0.9321 0.0511
Train-Valid 0.4094 0.1625 Train-Valid 0.0682 0.2951
Test - Valid 0.0860 0.2716 Test - Valid 0.8170 0.0696

Neuron 5 has the label P_flow1-3 and relates to active power flow on the line 1-3. The null hypothesis is
accepted in all cases for both tests, considering a significance level of 5%. Therefore, the population

similarity is assumed among all the data sets considered (see Table R8/ 59).

LASCA Project — Final Report 271

Table R8/ 60 - Results of statistical tests for case study “power system”, neuron 6.

Open | Smirnov p-value CvM TS Closed | Smirnov p-value CvM TS
Train - Test 0.0078 0.6562 Train - Test 0.9580 0.0327
Train-Valid 0.2079 0.2642 Train-Valid 0.7654 0.0778
Test - Valid 0.0755 0.3478 Test - Valid 0.7413 0.0463

Neuron 6 has the label P_flow3-9 and relates to: active power flow on the line 3-9. Both tests replied with
the rejection of the null hypothesis for the case Train Validation within the open system, indicating the non-
similarity between these two data sets. Both tests returned the acceptance of the null hypothesis for all the
remainder cases, indicating the similarity among each pair of data sets, always considering a significance

level of 5% (see Table R8/ 60).

LASCA Project — Final Report 272

Table R8/ 61 - Results of statistical tests for case study “power system”, neuron 7.

Open | Smirnov p-value CvM TS Closed Smirnov p-value CvM TS
Train - Test 0.4144 0.0795 Train - Test 0.9787 0.0356
Train-Valid 0.2883 0.1887 Train-Valid 0.3175 0.1933
Test - Valid 0.6543 0.1607 Test - Valid 0.4960 0.1642

Neuron 7 has the label P_flow3-24 and relates to active power flow on the line 3-24. The null hypothesis is
accepted in all cases for both tests, considering a significance level of 5%. Therefore, the population

similarity is assumed among all the data sets considered (see Table R8/ 61).

LASCA Project — Final Report 273

Table R8/ 62 - Results of statistical tests for case study “power system”, neuron 8.

Open | Smirnov p-value CvM TS Closed Smirnov p-value CvM TS
Train - Test 0.9106 0.0795 Train - Test 0.8266 0.0533
Train-Valid 0.1361 0.2837 Train-Valid 0.5061 0.0972
Test - Valid 0.4265 0.1776 Test - Valid 0.4433 0.1118

Neuron 8 has the label P_flow4-9 and relates to active power flow on the line 4-9. The null hypothesis is
accepted in all cases for both tests, considering a significance level of 5%. Therefore, the population

similarity is assumed among all the data sets considered (see Table R8/ 62).

LASCA Project — Final Report 274

Table R8/ 63 - Results of statistical tests for case study “power system”, neuron 9.

Open | Smirnov p-value CvM TS Closed Smirnov p-value CvM TS
Train - Test 0.2002 0.3274 Train - Test 0.9868 0.0249
Train-Valid 0.1081 0.2662 Train-Valid 0.6643 0.0880
Test - Valid 0.5995 0.0970 | Test - Valid 0.7285 0.0480

Neuron 9 has the label P_flow8-9 and relates to active power flow on the line 8-9. The null hypothesis is
accepted in all cases for both tests, considering a significance level of 5%. Therefore, the population

similarity is assumed among all the data sets considered (see Table R8/ 63).

LASCA Project — Final Report 275

Table R8/ 64 - Results of statistical tests for case study “power system”, neuron 10.

Open | Smirnov p-value CvM TS Closed | Smirnov p-value CvM TS
Train - Test 0.1666 0.1831 Train - Test 0.7491 0.0614
Train-Valid 0.0102 0.6138 Train-Valid 0.0929 0.3631
Test - Valid 0.8445 0.0707 Test - Valid 0.8577 0.0649

Neuron 10 has the label P_flow9-11 and relates to active power flow on the line 9-11. The null hypothesis
was rejected for the case Train-Validation within the open system with both tests, indicating the non-
similarity of this pair of data sets for a significance level of 5%. The null hypothesis was accepted by both
tests for all the remainder cases, indicating the population similarity among each pair of data sets, using a

significance level of 5% (see Table R8/ 64).

LASCA Project — Final Report 276

Table R8/ 65 - Results of statistical tests for case study “power system”, neuron 11.

Open | Smirnov p-value CvM TS Closed | Smirnov p-value CvM TS
Train - Test 0.7292 0.0588 Train - Test 0.6393 0.1172
Train-Valid 0.1451 0.2706 Train-Valid 0.0016 1.3402
Test - Valid 0.4713 0.0565 Test - Valid 0.2750 0.1973

Neuron 11 has the label P_flow9-12 relates to active power flow on the line 9-12. The null hypothesis was
rejected for the case Train-Validation within the closed system with both tests, indicating the non-similarity
of this pair of data sets using a significance level of 5%. The null hypothesis was accepted by both tests for
all the remainder cases, indicating the population similarity among each pair of data sets, using a

significance level of 5% (see Table R8/ 65).

LASCA Project — Final Report 277

Table R8/ 66 - Results of statistical tests for case study “power system”, neuron 12.

Open | Smirnov p-value CvM TS Closed | Smirnov p-value CvM TS
Train - Test 0.5485 0.1262 Train - Test 0.8731 0.0646
Train-Valid 0.1615 0.2332 Train-Valid 0.0444 0.5250
Test - Valid 0.3226 0.2234 Test - Valid 0.0633 0.3583

Neuron 12 has the label Q_flow1-3 and relates to reactive power flow on the line 1-3. The null hypothesis
was rejected for the case Train-Validation within the closed system with both tests, which indicates the
non-similarity of this pair of data sets, considering a 5% significance level. For all the remainder cases, the
null hypothesis was accepted by both tests, indicating the population similarity among each pair of data

sets, also with a 5% significance level (see Table R8/ 66).

LASCA Project — Final Report 278

Table R8/ 67 - Results of statistical tests for case study “power system”, neuron 13.

Open | Smirnov p-value CvM TS Closed Smirnov p-value CvM TS
Train - Test 0.7298 0.0479 Train - Test 0.7440 0.0986
Train-Valid 0.5453 0.1507 Train-Valid 0.5897 0.1064
Test - Valid 0.4723 0.1296 Test - Valid 0.6650 0.1140

Neuron 13 has the label Q_flow3-9 and relates to reactive power flow on the line 3-9. The null hypothesis is
accepted in all cases for both tests, considering a significance level of 5%. Therefore, the population

similarity is assumed among all the data sets considered (see Table R8/ 67).

LASCA Project — Final Report 279

Table R8/ 68 - Results of statistical tests for case study “power system”, neuron 14.

Open | Smirnov p-value CvM TS Closed Smirnov p-value CvM TS
Train - Test 0.3218 0.1811 Train - Test 0.9913 0.0314
Train-Valid 0.4227 0.1160 Train-Valid 0.9735 0.0371
Test - Valid 0.1701 0.2308 Test - Valid 0.9972 0.0192

Neuron 14 has the label Q_flow3-24 and relates to reactive power flow on the line 3-24. The null
hypothesis is accepted in all cases for both tests, considering a significance level of 5%. Therefore, the

population similarity is assumed among all the data sets considered (see Table R8/ 68).

LASCA Project — Final Report 280

Table R8/ 69 - Results of statistical tests for case study “power system”, neuron 15.

Open | Smirnov p-value CvM TS Closed | Smirnov p-value CvM TS
Train - Test 0.5915 0.0852 Train - Test 0.9714 0.0267
Train-Valid 0.0415 0.5271 Train-Valid 0.2629 0.2229
Test - Valid 0.7913 0.1371 Test - Valid 0.5962 0.0779

Neuron 15 has the label Q_flow4-9 and relates to reactive power flow on the line 4-9. The null hypothesis
was rejected for the case Train-Validation within the open system with both tests, which indicates the non-
similarity of this pair of data sets, considering a 5% significance level. For all the remainder cases, the null
hypothesis was accepted by both tests, indicating the population similarity among each pair of data sets,

also with a 5% significance level (see Table R8/ 69).

LASCA Project — Final Report 281

Table R8/ 70 - Results of statistical tests for case study “power system”, neuron 16.

Open | Smirnov p-value CvM TS Closed Smirnov p-value CvM TS
Train - Test 0.4271 0.1558 Train - Test 0.6284 0.0800
Train-Valid 0.7640 0.0836 Train-Valid 0.4147 0.1186
Test - Valid 0.2595 0.1540 Test - Valid 0.3300 0.1450

Neuron 16 has the label Q_flow8-9 and relates to reactive power flow on the line 8-9. The null hypothesis is
accepted in all cases for both tests, considering a significance level of 5%. Therefore, the population

similarity is assumed among all the data sets considered (see Table R8/ 70).

LASCA Project — Final Report 282

Table R8/ 71 - Results of statistical tests for case study “power system”, neuron 17.

Open | Smirnov p-value CYM TS Closed Smirnov p-value CVYM TS
Train - Test 0.8760 0.0449 Train - Test 0.9746 0.0279
Train-Valid 0.1373 0.4149 Train-Valid 0.3525 0.2203
Test - Valid 0.7364 0.1111 Test - Valid 0.5640 0.1699

Neuron 17 has the label Q_flow9-11 and relates to reactive power flow on the line 9-11. The null
hypothesis is accepted in all cases for both tests, considering a significance level of 5%. Therefore, the

population similarity is assumed among all the data sets considered (see Table R8/ 71).

LASCA Project — Final Report 283

Table R8/ 72 - Results of statistical tests for case study “power system”, neuron 18.

Open | Smirnov p-value CVM TS Closed Smirnov p-value CVM TS
Train - Test 0.4264 0.1005 Train - Test 0.5105 0.1514
Train-Valid 0.3906 0.2399 Train-Valid 0.1115 0.3996
Test - Valid 0.2133 0.2037 Test - Valid 0.8237 0.0363

Neuron 18 has the label Q_flow9-12 and relates to reactive power flow on the line 9-12. The null
hypothesis is accepted in all cases for both tests, considering a significance level of 5%. Therefore, the

population similarity is assumed among all the data sets considered (see Table R8/ 72).

83 5 Conclusions

This report includes the statistical test performed to assess the similarity of distributions composing the
datasets of train, test and validation applied to test the accuracy of the ITL neural networks developed. The
statistical test found to adequately address this issues were Smirnov and Cramer von Mises. These tests

LASCA Project — Final Report 284

were conducted under a neuron basis. The summary on the acceptance of null Hypothesis for each case

was provided in Table R8/ 3, Table R8/ 28 and Table R8/ 54.

84 Bibliography
Conover, W. (1980). Practical nonparametric statistics (2nd ed.). New York: John Wiley & Sons.

IEEE RTS Task Force of APM Subcommittee. (1979). IEEE Reliability Test System. IEEE Transactions on
PAS, 98(6), 2047-2054.

LASCA Project — Final Report 285

